В каком растворе осмотическое давление больше
Содержание статьи
Осмотическое давление
Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.
Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.
Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.
Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для внутривенного введения, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3-10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.
Уравнение Вант-Гоффа[править | править код]
Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на уравнение состояния для идеального газа:
,
где i — изотонический коэффициент раствора; C — молярная концентрация раствора, выраженная через комбинацию основных единиц СИ, то есть, в моль/м³; R — универсальная газовая постоянная; T — термодинамическая температура раствора.
Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.
Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03-0,04 атм). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где πОНК больше. При гнойных процессах πОНК в очаге воспаления возрастает в 2-3 раза, так как увеличивается число частиц из-за разрушения белков.
В организме осмотическое давление должно быть постоянным (около 7,7 атм). Поэтому для внутривенного введения обычно используются изотонические растворы (растворы, осмотическое давление которых равно πплазмы ≈ 7,7 атм. (0,9 % NaCl — физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых π больше, чем πплазмы, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4∙10H2O, MgSO4∙7H2O).
Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).
Уравнение Галлера[править | править код]
Экспериментально определенное значение осмотического давления высокомолекулярных соединений больше теоретического, определяемого по формуле Вант-Гоффа . Это явление находит объяснение в относительной независимости теплового движения каждой части макромолекулы и описывается уравнением Галлера:[1]
Здесь: — концентрация раствора высокомолекулярного соединения (г/л), — молярная масса (г/моль), — коэффициент, учитывающий гибкость и формулу макромолекулы в растворе, R — универсальная газовая постоянная, T — термодинамическая температура раствора.
При небольших значениях концентрации формула Галлера переходит в формулу Вант-Гоффа.
Обоснование формулы Вант-Гоффа с термодинамических позиций[править | править код]
В растворе свободная энергия , где — молярная часть раствора, — его мольный объем. Появление члена эквивалентно внесению в свободную энергию внешнего давления. Для чистого растворителя . При равновесии для растворителя равно нулю. Таким образом,
откуда:
то есть получена формула Вант-Гоффа ().
При её выведении высчитано, что — малая величина. Это позволяет разложить в ряд и далее применить соотношение Произведение в разбавленных растворах практически равно объему раствора.
Осмотическое давление коллоидных растворов[править | править код]
Для возникновения осмотического давления должны выполняться два условия:
- наличие полупроницаемой перегородки (мембраны);
- наличие по обе стороны мембраны растворов с разной концентрацией.
Мембрана проницаема для частичек (молекул) определенного размера, поэтому она может, например, выборочно пропускать сквозь свои поры молекулы воды, не пропуская молекулы этилового спирта. Для газовой смеси — водорода и азота — роль полупроницаемой мембраны может выполнять тонкая палладиевая фольга, сквозь которую свободно диффундирует водород, тогда как азот она практически не пропускает. с помощью такой мембраны можно разделять смесь водорода и азота на отдельные компоненты.
Простыми и давно известными примерами мембран, которые проницаемы для воды и непроницаемы для многих других растворенных в воде веществ, является кожа, пергамент, и другие ткани животного и растительного происхождения.
Пфеффер с помощью осмометра, в котором в качестве полупроницаемой мембраны использовался пористый фарфор, обработанный Cu2Fe(CN)6, исследовал осмотическое давление водных растворов тростникового сахара. На основе этих измерений Вант-Гофф в 1885 году предложил эмпирическое уравнение, которому подчиняется осмотическое давление разведенных растворов:
,
где c=n/V — концентрация растворенного вещества, моль/м3.
Это уравнение по форме совпадает с законом Бойля — Мариотта для идеальных газов. Поэтому осмотическое давление разведенных растворов можно определить как давление, которое бы создавала то же самое количество молекул растворенного вещества, если бы оно было в виде идеального газа и занимало при данной температуре объем, равный объему раствора.
Уравнение Вант-Гоффа можно несколько преобразовать, подставляя вместо концентрации :
,
где — массовая концентрация растворенного вещества; — его молекулярная масса.
В таком виде уравнение Вант-Гоффа широко применяется для определения молярной массы растворенного вещества. Осмотический метод применяют зачастую для определения молярных масс высокомолекулярных соединений (белков, полисахаридов и других). Для этого достаточно измерить осмотическое давление раствора с известной концентрацией.
Если вещество диссоциирует в данном растворе, то осмотическое давление будет большим, чем рассчитанное и нужно вводить изотонический коэффициент:
Уравнение Вант-Гоффа справедливо только для разведенных растворов, которые подчиняются закону Рауля. При повышенных концентрациях растворов в последнем уравнении должно быть заменено на активность или фугитивность
Роль осмоса в биологических системах[править | править код]
Явление осмоса и осмотическое давление играют огромную роль в биологических системах, которые содержат полупроницаемые перегородки в виде разных тканей, в том числе оболочек клеток. Постоянный осмос воды внутрь клеток создает избыточное гидростатическое давление, которое обеспечивает прочность и упругость тканей, которое называют тургором.
Если клетку, например, эритроцит, поместить в дистиллированную воду (или очень разбавленный раствор соли), то вода будет проникать внутрь клетки и клетка будет набухать. Процесс набухания может привести к разрыву оболочки эритроцита, если произойдет так называемый гемолиз.
Обратное явление наблюдается, если вместить клетку в концентрированный раствор соли: сквозь мембрану вода из клеток диффундирует в раствор соли. При этом протоплазма сбрасывает оболочку, клетка сморщивается, теряет тургор и стойкость, свойственные ей в нормальном состоянии. Это явление называется плазмолизом. При помещении плазмолизованных клеток в воду протоплазма опять набухает и в клетке восстанавливается тургор. Происходит при этом так называемый деплазмолиз: это можно наблюдать, помещая цветы, которые начинают вянуть, в воду. И только в изотоническом растворе, который имеет одинаковую концентрацию (вернее, одинаковое осмотическое давление с содержанием клетки), объем клетки остается неизменным.
Процессы усвоения еды, обмена веществ тесно связаны с разной проницаемостью тканей для воды и других растворенных в ней веществ.
Осмотическое давление отыгрывает роль механизма, который подает нутриенты клеткам; у высоких деревьев последние поднимаются на высоту нескольких десятков метров, что соответствует осмотическому давлению в несколько десятков атмосфер. Типовые клетки, сформировавшиеся из протоплазматических мешков, наполненных водными растворами разных веществ (клеточный сок), имеют определенное значение для давления, величина которого измеряется в пределах 0,4-2 МПа.
См. также[править | править код]
- Осмос
- Обратный осмос
- Осморегуляция
- Диффузионное давление
- Коллигативные свойства растворов
Примечания[править | править код]
- ↑ Ершов Ю. А., Попков В. А., Берлянд А. С. Общая химия. Биофизическая химия. Химия биогенных элементов. — М., Высшая школа, 1993. — ISBN 5-06-002170-X. — с. 540-541
Литература[править | править код]
- Детлаф А. А., Яворский Б. М. Курс физики: Учебное пособие для вузов — М.: Высшая школа, 1989. — С. 113.
- Яцимирський В. К. Фізична хімія. (На украинском)
Источник
Осмотическое давление (Пример)
Изучение свойств разбавленных растворов показало, что между газообразным состоянием вещества и состоянием его в растворах существует большое сходство.
Как молекулы газа вследствие своего движения занимают наибольший объем, оказывая при этом давление на стенки сосуда, в котором газ заключен, так и молекулы растворенного вещества стремятся занять наибольший объем. Объем газа определяется размерами сосуда, а объем, в котором могут распределяться молекулы растворенного вещества, — объемом, занимаемым раствором.
Если поместить в цилиндр концентрированный раствор какого-нибудь вещества, например раствор сахара, а поверх него осторожно налить слой чистой воды, то постепенно молекулы сахара равномерно распределятся по всему объему жидкости. Это явление, как известно, называется диффузией; диффузия продолжается до тех пор, пока концентрация молекул сахара не станет одинаковой во всех слоях жидкости.
Рис. . Прибор для демонстрации осмотического давления раствора
Равномерное распределение молекул сахара и воды во всем объеме жидкости может происходить двумя путями: или молекулы сахара, оставляя нижний слой воды, переходят в верхний, пока их концентрация в обоих слоях не сравняется, или молекулы воды проникают из верхнего слоя в нижний, пока не перемешаются равномерно с молекулами сахара.
Окончательный результат, очевидно, в обоих случаях будет один и тот же. В действительности выравнивание концентрации идет обоими путями, т. е. происходит как движение молекул сахара в воду, так и движение молекул воды в раствор сахара.
Объяснение эффекта осмоса
Представим теперь, что вода и раствор сахара разделены пористой перегородкой, через которую могут свободно проходить молекулы воды, но не могут проникать молекулы сахара. Подобного рода «полупроницаемая» перегородка может быть получена, например, пропиткой глиняного пористого цилиндра раствором медного купороса с последующим погружением цилиндра в раствор железистосинеродистого калия. В результате такой обработки в порах цилиндра оседает железистосинеродистая медь и стенки цилиндра становятся полупроницаемыми.
Если в обработанный таким образом цилиндр налить раствор сахара и погрузить цилиндр в чистую воду, то выравнивание концентраций (или, вернее, уменьшение концентрации раствора сахара) будет происходить только вследствие перемещения молекул воды. Последние в большем числе диффундируют в раствор, чем обратно; поэтому объем раствора будет постепенно увеличиваться, а концентрация сахара в нем уменьшаться.
Такая односторонняя диффузия через полупроницаемую перегородку называется осмосом. При достаточном количестве воды переход ее в раствор через полупроницаемую перегородку, строго говоря, должен продолжаться бесконечно, если этому не воспрепятствует какая-нибудь сила, действующая в противоположном направлении.
Возьмем сосуд с полупроницаемыми стенками, переходящий вверху в длинную узкую вертикальную трубку (рис.). Наполним его раствором сахара и погрузим в сосуд с чистым растворителем. Вследствие осмоса объем раствора будет постепенно увеличиваться и раствор начнет заполнять вертикальную трубку.
По мере поднятия уровня раствора в трубке будет создаваться избыточное гидростатическое давление, измеряемое разностью уровней раствора и растворителя и противодействующее проникновению молекул растворителя в раствор. Когда гидростатическое давление достигнет определенной величины, осмос прекратится. Сила, обусловливающая осмос, называется осмотическим давлением раствора. Величина осмотического давления определяется тем внешним давлением на раствор, при котором осмос прекращается .
Явления осмоса играют очень важную роль в жизни животных и особенно растительных организмов. Оболочки клеток представляют собой перепонки, легко проницаемые для воды, но почти непроницаемые для веществ, растворенных в клеточном соке. Проникая в клетки, вода создает в них довольно большое давление, которое слегка растягивает оболочки клеток и поддерживает их в напряженном состоянии.
Вот почему такие мягкие органы растения, как травянистые стебли, листья, лепестки цветов, обладают известной упругостью. Если срезать растение, то вследствие испарения воды через оболочки клеток объем клеточного сока уменьшается, оболочки клеток опадают, становятся дряблыми — растение вянет. Но стоит только начавшее вянуть растение поставить в воду, как начинается осмос, оболочки клеток снова напрягаются и растение принимает прежний вид.
Осмос является также одной из причин, обусловливающих поднятие воды по стеблю растения, рост клеток и многие другие явления.
Первые точные измерения величины осмотического давления, произведенные Пфейфером, привели к установлению двух следующих положении:
1. Осмотическое давление раствора прямо пропорционально концентрации растворенного вещества.
2. Осмотическое давление пропорционально абсолютной температуре раствора.
Открытие расчета давления
В 1886 г. голландский физико-химик Вант-Гофф впервые обратил внимание на полную аналогию между этими положениями и газовыми законами Бойля-Мариотта и Гей-Люссака. Использовав числовые данные, полученные при измерениях осмотического давления, он показал, что величина осмотического давления для разбавленных растворов может быть выражена уравнением, совершенно сходным с уравнением состояния газа
PV = RT
где Р — осмотическое давление, а V — объем раствора, содержащего 1 грам-молекулу растворенного вещества. При этом оказывается, что постоянная R имеет то же самое числовое значение, что и в уравнении газового состояния
Отсюда следует, что закон Авогадро также применим к разбавленным растворам. И действительно, опыт показывает, что эквимолекулярные (т. е. содержащие одно и то же число молекул в 1 л) растворы различных веществ при одинаковой температуре обладают и одинаковым осмотическим давлением. В частности, растворы, содержащие 1 грам-молекулу растворенного вещества в 22,4 л, обладают при 0° осмотическим давлением, равным 1 ат.
Растворы, имеющие одинаковое осмотическое давление, называются изотоническими.
Что такое осмотическое давление
Таким образом осмотическое давление, подобно давлению газа, при неизменном объеме и постоянной температуре зависит только от числа молекул растворенного вещества, но не зависит ни от природы растворенного вещества, ни от природы растворителя.
Если заменить в предыдущем уравнении молекулярный объем V концентрацией С, выраженной в молях на 1 л (V =1/С), то получим более удобное для вычисления осмотического давления выражение:
P = CRT
Закон Вант-Гоффа для разбавленных растворов
Глубокая аналогия между газами и растворами ясно выражена в следующем положении, носящем название закона Вант-Гоффа:
Осмотическое давление раствора равно тому давлению, которое производило бы растворенное вещество, если бы оно при той же температуре находилось в газообразном состоянии и занимало объем, равный объему раствора.
Этим законом и выражается сущность теории растворов Вант-Гоффа. Необходимо, однако, подчеркнуть, что, несмотря на полную аналогию числовых зависимостей, механизмы газового и осмотического давлений совершенно различны.
Яков Генрих Вант-Гофф (Jacobus Henricus Van’t Hoff) — один из основоположников современной физической химии, родился в г. Роттердаме (Голландия) 30 августа 1852 г. Окончив техническое училище в Дельфте, он изучал затем химию в университетах Бонна, Парижа и Утрехта. В 1874 г. получил степень доктора математики и натуральной философии в Утрехтском университете.
С 1896 г. и до конца своей жизни Вант-Гофф занимался солевыми равновесиями в растворах.
Вант-Гофф состоял членом-корреспондентом Петербургской Академии наук и с 1898 г. почетным членом Московского Общества испытателей природы.
Закон Вант-Гоффа справедлив только для разбавленных растворов. В концентрированных растворах наблюдаются значительные отклонения от него. Еще большие отклонения обнаруживаются в водных растворах электролитов — веществ, проводящих ток в водном растворе, о чем подробно будет сказано в следующей главе.
Яков Генрих Вант-Гофф (1852-1911)
Благодаря зависимости между молярной концентрацией раствора и его осмотическим давлением можно по величине осмотического давления вычислять молекулярные веса многих веществ, которые не превращаются в газообразное состояние, но легко растворяются в том или ином растворителе.
Наоборот, зная молярную концентрацию раствора, можно рассчитать его осмотическое давление. При расчетах полезно иметь в виду, что осмотическое давление раствора, содержащего в литре 1 моль растворенного вещества, может быть принято равным 22,4 ат (хотя фактически при такой концентрации раствора оно несколько больше).
Пример расчета осмотического давления
Рассчитать осмотическое давление раствора, содержащего в литре 9 г глюкозы.
Молекулярный вес глюкозы 180; следовательно, 9 г составляют 0,05 моля. Так как осмотическое давление пропорционально количеству растворенного вещества, то искомое осмотическое давление (х) находим из пропорции:
22,4 : х = 1 : 0,05
откуда
х = 22,4 • 0,05= 1,12 am
Непосредственное измерение осмотического давления представляет довольно большие трудности, но в этом и нет настоятельной необходимости. Как показал Вант-Гофф, осмотическое давление тесно связано с некоторыми другими свойствами разбавленных растворов, сравнительно легко поддающимися измерению, а именно: с понижением давления пара, понижением температуры замерзания, повышением температуры кипения.
Определив любую из этих величин, можно по ней рассчитать и осмотическое давление раствора. Так как все эти величины, подобно осмотическому давлению, изменяются пропорционально числу частиц растворенного вещества, то они также могут быть использованы для определения молекулярного веса растворенных веществ.
79 80 81
Вы читаете, статья на тему Осмотическое давление
Источник