В какой реакции энтропия продуктов больше энтропии исходных веществ

Энтропия. Энергия Гиббса

Понятие энтропии

Абсолютная энтропия веществ и изменение энтропии в процессах

Стандартная энтропия

Стандартная энтропия образования

Энергия Гиббса

Стандартная энергия Гиббса образования

Энтальпийный, энтропийный фактор и направление процесса

Примеры решения задач

Задачи для самостоятельного решения

Энтропия S — функция состояния системы. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

ΔS = S(прод.) — S(исх.)

где S(прод.) и S(исх.) — соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы ΔV в результате процесса. Знак ΔV определяется по изменению количества вещества газообразных реагентов Δnг. Так, для реакции

CaCO3(к) = CaO(к) + CO2(г)

(Δnг = 1) ΔV > 0, значит, ΔS > 0.

Для реакции:

С(графит) + 2Н2(г) = СН4(г)

(Δnг = -1) ΔV < 0, следовательно и ΔS < 0.

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25оС). Энтропия в этом случае обозначается Sо298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (Sо) увеличивается при повышении температуры.

Стандартная энтропия образования ΔSоf,298 (или ΔSообр,298) — это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса G — функция состояния системы. Энергия Гиббса равна:

G = Н — ТS.

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение δG в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса (ΔG < 0). При достижении равновесия в системе ΔG = 0.

Стандартная энергия Гиббса образования δGоf,298 (или δGообр,298) — это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, δGоf,298 = 0.

Проанализируем уравнение ΔGоТ = ΔНоТ — ΔТSоТ. При низких температурах ТΔSоТ мало. Поэтому знак ΔGоТ определяется в основном значением ΔНоТ (энтальпийный фактор). При высоких температурах ТΔSоТ — большая величина, знак Δ GоТ определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (ΔНоТ) и энтропийного (ТΔSоТ) факторов существует четыре варианта процессов.

    1. Если ΔНоТ < 0, ΔSоТ > 0, то ΔGоТ < 0 всегда (процесс может протекать самопроизвольно при любой температуре).
    2. Если ΔНоТ > 0, ΔSоТ < 0, то ΔGоТ > 0 всегда (процесс не протекает ни при какой температуре).
    3. Если ΔНоТ < 0, ΔSоТ < 0, то ΔGоТ < 0 при Т < ΔНо/ΔSо (процесс идет при низкой температуре за счет энтальпийного фактора).
    4. Если ΔНоТ > 0, ΔSоТ > 0, то ΔGоТ < 0 при Т > ΔНо/ ΔSо (процесс идет при высокой температуре за счет энтропийного фактора).

Задача 1. Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

4NH3(г) + 5O2(г) = 4NО(г) + 6H2O(ж)

Объяснить знак и величину ΔSо.

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоNH3(г)O2(г)NО(г)H2O(ж)
Sо298,

Дж/(моль·К)

192,66205,04210,6469,95

ΔSох.р.,298 = 4Sо298(NО(г) ) + 6Sо298(H2O(ж)) — 4Sо298(NH3(г)) — 5Sо298(O2(г)) = 4× 210,64 + 6× 69,95 — 4× 192,66 — 5× 205,04 = — 533,58 Дж/К

В данной реакции ΔV < 0 (Δnг = — 5), следовательно и ΔSoх.р.,298 < 0, что и подтверждено расчетом.

Задача 2. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH4NO3(к). Отличается ли стандартная энтропия образования NH4NO3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH4NO3 отвечает изменение энтропии в процессе:

N(г) + 2H2(г) + 3/2O2(г) = NH4NO3(к); δSоf,298(NH4NO3(к)) = ?

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2(г)H2(г)O2(г)NH4NO3(к)
Sо298,

Дж/(моль·К)

191,50130,52205,04151,04

ΔSох.р.,298 = ΔSоf,298(NH4NO3(к)) = Sо298(NH4NO3(к)) — Sо298(N2(г)) — 2Sо298(H2(г)) — 3/2Sо298(O2(г)) = 151,04-191,50 — 2× 130,52-3/2× 205,04 = — 609,06 Дж/(моль·К).

Стандартная энтропия образования NH4NO3(к), равная — 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония Sо298(NH4NO3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ Sо298 всегда больше нуля, в то время как величины ΔS0f,298, как правило, знакопеременны.

Задача 3. Изменение энергии Гиббса реакции:

2Н2(г) + О2(г) = 2 Н2О(ж)

равно δGо298= -474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции ΔSо<0. Поскольку ΔGо298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку ТΔSо<0.

Читайте также:  Какие продукты содержат цинк и фолиевую кислоту

Задача 4. Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

С4Н10(г) = 2С2Н4(г) + Н2(г)

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоС4Н10(г)С2Н4(г)Н2(г)
ΔGоf,298× , кДж/моль— 17,1968,14
Sо298, Дж/(моль·К)310,12219,45130,52

ΔGох.р.,298 = 2ΔGоf,298(С2Н4(г)) + ΔGоf,298(Н2(г)) — ΔGоf,298(С4Н10(г)) = 2× 68,14 + 17,19 = 153,47 кДж.

ΔGох.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

ΔSох.р.,298 = 2Sо298(С2Н4(г)) + Sо298(Н2(г)) — Sо298(С4Н10(г)) = 2× 219,45 + 130,52 — 310,12 = +259,30 Дж/К.

Поскольку ΔSох.р.,298 > 0, то при температуре Т>ΔНо/ΔSо величина ΔGох.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Задача 5. Пользуясь справочными данными по ΔGоf,298 и Sо298, определите ΔHо298 реакции:

N2O(г) + 3H2(г) = N2H4(г) + H2O(ж)

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2O(г)H2(г)N2H4(г)H2O(ж)
ΔGоf,298, кДж/моль104,12159,10-237,23
Sо298, Дж/(моль·К)219,83130,52238,5069,95

ΔGох.р.,298 = ΔGоf,298(N2H4(г)) + ΔGоf,298(H2O(ж)) — ΔGоf,298(N2O(г)) — 3ΔGоf,298(H2(г)) = 159,10 + (-237,23) — 104,12 — 0 = -182,25 кДж.

ΔSох.р.,298 = Sо298(N2H4(г)) + Sо298(H2O(ж)) — Sо298(N2O(г)) — 3Sо298(H2(г)) = 238,50 + 69,95 — 219,83 -3× 130,52 = -302,94 Дж/К.

ΔGо298 = ΔНо298 — ТΔSо298. Подставляя в это уравнение величины ΔНо298 и ТΔSо298, получаем:

ΔНо298 = -182,25× 103 + 298·(-302,94) = -272526,12 Дж = — 272,53 кДж.

Следует подчеркнуть, что поскольку ΔSо298 выражена в Дж/(моль× К), то при проведении расчетов ΔG0298 необходимо также выразить в Дж или величину ΔS0298 представить в кДж/(мольK).

1. Используя справочные данные, определите стандартную энтропию образования ΔSоf,298 NaHCO3(к).

2. Выберите процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO2(г):

а) NO(г) + 1/2O2(г) = NO2(г);

б) N2(г) + 2O2(г) = 2NO2(г);

в) 1/2N2(г) + O2(г) = NO2(г);

г) N(г) + O2(г) = NO2(г).

3. Используя справочные данные, вычислите при 298,15 К изменение энтропии в реакции:

2NH4NO3(к) = 2N2(г) + 4H2O(г) + О2(г).

Объясните знак и величину ΔSº реакции.

  • .

δSох.р.,298 =1040,84 Дж/К. В данной реакции δV > 0 (D nг = 7),

следовательно и δSох.р.,298 > 0, что и подтверждено расчетом.

4. Используя справочные данные, определите принципиальную возможность протекания реакции при 298,15 К:

NiO(к) + C(графит) = Ni(к) + CO(г)

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.

ΔGох.р.,298 = 74,45 кДж > 0, следовательно, при Т = 298,15 К

реакция самопроизвольно протекать не будет.

Поскольку ΔSох.р.,298 = 183,69 Дж/К, то есть больше нуля, то при достаточно высоких температурах ΔGох.р.,298 изменит знак на обратный.

5. Рассчитайте стандартную энергию Гиббса образования ΔGоf,298 C2H5OH(ж), используя справочные данные о величинах ΔНоf,298 и Sо298.

6. Используя справочные данные, определите стандартную энтропию образования ΔSоf,298 K2Cr2O7(к).

7. На основе расчетов термодинамических величин покажите, чем эффективнее восстанавливать при 298 К Cr2O3(к) до металла — алюминием или магнием:

1) Cr2O3(к) + 3Mg(к) = 3MgO(к) + 2Cr(к); ΔGо1;

2) Cr2O3(к) + 2Al(к) = Al2O3(к) + 2Cr(к); ΔGо2.

ΔGо1=-648,9 кДж; ΔGо2=-523,3 кДж.

Таким образом, самопроизвольно протекают два процесса.

Так как значение ΔGо1 более отрицательное,

то эффективнее при 298 К будет протекать процесс восстановления магнием.

8. Используя справочными данными по величинам Sо298, определите возможность самопроизвольного протекания в изолированной системе при 298 К процесса:

KClO3(к) = KCl(к) + 3/2O2(к)

ΔSо298=247,1 Дж/К.

ΔSо298 больше 0, следовательно данный процесс будет протекать самопроизвольно

в изолированной системе при 298 К.

9. Используя справочные данные, вычислите при 298 К изменение энтропии в процессе:

Н2(г) + 1/2О2(г) = Н2О(г)

10. На основе справочных данных оценить температуру восстановления WO3(к) водородом:

WO3(к) + 3H2(г) = W(к) + 3H2O(г).

Источник

Изменения энтропии в химических реакциях.

Некоторые формулировки второго закона термодинамики

1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропии всех тел, которые принимают участие в этом процессе (М. Планк).

5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

7. Энтропия-это стрелка времени* (А. Эддингтон).

Изменения энтропии в химических реакциях

Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом S» и имеет размерность ДжК-1 моль-1. В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре 25°С. Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

Твердое вещество= Жидкость= Газ

Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

Читайте также:  Какие два продукта исключить чтобы похудеть

Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (О К) равна нулю.

Таблица 5.12. Стандартные молярные энтропии S°(298 К) (Дж/(К моль) )

Твердые вещества

Жидкости

Газы

С (алмаз)

2,4

H2O

69,9

H2

131,0

Cu

33,1

Hg

76,0

CH4

186,2

SiO2

41,8

Br2

156,6

O2

205,0

CuO

43,5

C2H5OH

160,7

CO2

213,6

I2

116,8

C6H6

173,3

Cl2

233,0

CuSO4 •5H2O

360,2

CHCl3

201,8

NO2

239,9

Изменение стандартной молярной энтропии в химической реакции определяется уравнением

(16)

Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов-только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается — нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?

Оглавление:

  • часть 1 (Cтроение атома, Химическая связь)
  • часть 2 (Газы, жидкости и твердые вещества, Стехиометрия, Энергетика)
  • часть 3 (Фазовые равновесия, Химическое равновесие, Ионы, Химическая кинетика)
  • часть 4 (Электрохимия)

Источник

ЛАБОРАТОРНАЯ РАБОТА №1

« ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА»

Работу выполнил______________ Работу принял__________________

Дата выполнения_______________ Отметка о зачете________________

Основные понятия.

Химическая термодинамика изучает энергетические эффекты реакций, их направление и пределы самопроизвольного протекания. Объект изучения в химической термодинамике — тер­модинамическая система (в дальнейшем просто система) — это совокупность взаимодействующих веществ, мысленно или реально обособленная от окружающей среды.

По характеру энерго- и массообмена с окружающей средой системы подразделяются на изолированные, закрытые и открытые: изолированные системы не обмениваются с окружающей средой ни массой (Δm = 0), ни энергией (ΔU = 0); в закрытых системах имеет место только энергообмен ((Δm = 0, ΔU≠0); открытые системы обмениваются с окружающей средой и массой (Δm≠0) и энергией (ΔU≠ 0).

Система может находиться в различных состояниях.Состояние системы определяется чис­ленными значениями термодинамических параметров: температуры, давления, концентраций ве­ществ и пр. При изменении значения хотя бы одного из термодинамических параметров, например, температуры происходит изменение состояния системы.Изменение состояния системы называется термодинамическим процессом (или просто процессом).

В зависимости от условий перехода системы из одного состояния в другое, в химической термо­динамике различают несколько типов процессов, простейшими из которых являются: изотермический, протекающий при постоянной температуре (T=const), изобарный, протекающий при постоянном давле­нии (p=const) и изохорный, протекающий при постоянном объёме (V=const). Изотермический процесс называется изобарно-изотермическим, если он протекает при постоянном давлении (p=const, T=const), и изохорно-изотермическим, если в ходе процесса неизменным остаётся объём (V=const, T=const).

Чаще всего в химической термодинамике рассматриваются реакции, протекающие в стандарт­ных условиях, т.е. при стандартной температуре и стандартном состоянии всех веществ.В качестве стандартной принята температура 298К. Стандартным состоянием вещества является его состоя­ние при давлении 101,3 кПа. Если вещество находится в растворе, за стандартное принимается его состояние при концентрации 1 моль/л.

Химическая термодинамика изучает не свойства термодинамических систем, а термодина­мические процессы. Для характеристики процессов химическая термодинамика оперирует осо­быми величинами, называемыми функциями состояния: U — внутренняя энергия, Н — энтальпия, S — энтропия, G — энергия Гиббса и F — энергия Гельмгольца. В любом процессе происходит изменение всех функций состояния. Поэтомузадачей химической термодинамики является не определение значений функций состояния для каждого конкретного состояния системы, а определение их из­менения в термодинамическом процессе: ΔU, ΔН, ΔS, ΔG, ΔF.

2. Теплота реакции и термохимические расчёты.

Теплотой реакции (тепловым эффектом реакции) называется количество выделенной или поглощённой теплоты Q. Если в ходе реакции теплота выделяется, такая реакция называется эк­зотермической, если теплота поглощается, реакция называется эндотермической.

Теплота реакции определяется, исходя из первого закона (начала) термодинамики, матема­тическим выражением которого в его наиболее простой форме для химических реакций является урав­нение:

Q = ΔU + рΔV (2.1)

где Q — теплота реакции, ΔU — изменение внутренней энергии, р -давление, ΔV — изменение объёма.

Термохимический расчёт заключается в определении теплового эффекта реакции. В соот­ветствии с уравнением (2.1) численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=const, теплота реакции QV=ΔU, в изобарном процессе при p=const тепловой эффект QP =ΔH. Таким образом, термохимический расчёт заключаетсяв определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосу­дах. протекающие при атмосферном давлении), при приведении термохимических расчётов практическивсегда производится расчёт ΔН. ЕслиΔН<0, то реакция экзотермическая, если жеΔН>0, то ре­акция эндотермическая.

Читайте также:  Какие продукты повышают иммунную систему

Термохимические расчёты производятся, используя или закон Гесса, согласно которому тепло­вой эффект процесса не зависит от его пути, а определяется лишь природой и состоянием исход­ных веществ и продуктов процесса, или,чаще всего, следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий ) образования продуктов за вычетом суммы теплот ( эн­тальпий ) образования реагентов.

В расчётах по закону Гесса используются уравнения вспомогательных реакций, тепловые эффек­ты которых известны. Суть операций при расчётах по закону Гесса заключается в том, что над уравне­ниями вспомогательных реакций производят такие алгебраические действия, которые приводят к урав­нению реакции с неизвестным тепловым эффектом.

Пример 2.1. Определение теплоты реакции: 2СО + O2 = 2СO2 ΔН — ?

В качестве вспомогательных используем реакции: 1)С + О2 = С02; ΔН1= -393,51 кДж и 2)2С + О2 = 2СО; ΔН2 = -220,1 кДж, где ΔН/ и ΔН2 — тепловые эффекты вспомогательных реакций. Используя уравнения этих реакций, можно получить уравнение заданной реакции, если вспомогатель­ное уравнение 1) умножить на два и из полученного результата вычесть уравнение 2). Поэтому неиз­вестная теплота заданной реакции равна:

ΔН = 2Δh2 — ΔН2 = 2(-393,51) — (-220,1) = -566,92 кДж.

Если в термохимическом расчёте используется следствие из закона Гесса, то для реакции, выра­женной уравнением aA+bB=cC+dD, пользуются соотношением:

ΔН =( сΔНобр,с + dΔHoбpD) — (аΔНобрA + bΔНобр,в) (2.2)

где ΔН — теплота реакции ; ΔНoбр — теплоты ( энтальпии ) образования, соответственно, продуктов реак­ции С и D и реагентов А и В; с, d, a, b — стехиометрические коэффициенты.

Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодина­мически устойчивых фазах и модификациях1*.Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н2(г)+ О2(г)= 2Н2О(г).Раз­мерность теплоты образования — кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных ус­ловий, для которых формула (2.2) приобретает вид:

ΔН°298 = (сΔН°298,обр,С+ dΔH°298,o6p,D) — (аΔН°298,обрA + bΔН°298,обр,в)(2.3)

где ΔН°298 — стандартная теплота реакции в кДж (стандартность величины указывается верхним индек­сом «0» ) при температуре 298К, а ΔН°298,обР — стандартные теплоты (энтальпии) образования также при температуре 298К.Значения ΔН°298.обР.определены для всех соединений и являются табличны­ми данными.2* — см. таблицу приложения.

Пример 2.2. Расчёт стандартной теплоты реакции, выраженной уравнением:

4NH3(r) + 5O2(г) = 4NO(г) + 6Н2О(г).

Согласно следствию из закона Гесса записываем 3*:

ΔН0298=( 4ΔН0298.oбp.No + 6ΔH0298. одр.Н20 ) — 4ΔH0298 обр.NHз. Подставив табличные значения стандартных теплот образования соединений, представленных в уравнении, получим: ΔН°298 = (4(90,37) + 6(-241,84)) — 4(-46,19) = — 904,8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такиеуравнения с обозначенным тепловым эффектом называются термохимическими. Например, термохимическое уравнение рассмотренной в примере 2.2 реакции записывается:

4NH3(г) + 502(г) = 4NО(г) + 6Н20(г); ΔН°298 = — 904,8 кДж.

Если условия отличаются от стандартных, в практических термохимических расчётах допускает­ся использование приближения:ΔН ≈ΔН°298 (2.4)Выражение(2.4) отражает слабую зависимость величины теплоты реакции от условий её протекания.

Энтропия реакции.

Энтропией реакции называется изменение энтропии ΔS, сопутствующее превращению реа­гентов в продукты реакции. Энтропию реакции аА + ЬВ = сС + dD рассчитывают по формуле:

ΔS = (cSС + dSD) — (aSA + bSB) (3.1)

где ΔS — энтропия реакции ; S — абсолютные значения энтропий продуктов реакции С и D и реагентов А и В; с, d, a, b — стехиометрические коэффициенты.

Энтропия S — единственная функция состояния, абсолютное значение которой можно оп­ределить для любого состояния системы. Для 1 моля вещества абсолютное значение энтропии опре­деляется по формуле:S = RlnW (3.2) где R = 8,314 Дж/(мольК) — универсальная газовая постоянная; W — термодинамическая вероятность рас­сматриваемого состояния — безразмерная величина.

В термодинамических расчётах обычно определяют стандартные энтропии реакцийΔS0298.Для реакции аА + bВ = сС + dD значение стандартной энтропии рассчитывают по формуле:

ΔS°298 = (cS°298.C+ dS°298,D) — (aS0298.А + bS°298,B) (3.3)

где S°298- табличные значения абсолютных стандартных энтропий соединений в Дж/(моль К) — см. таб­лицу приложения, a ΔS°298- стандартная энтропия реакции в Дж/К.

Если условия отличаются от стандартных, в практических термодинамических расчётах допуска­ется использование приближения: ΔS ≈ ΔS°298 (3.4) Выражение (3.4) отражает слабую зависимость величины энтропии реакции от условий её проведения.

Пример 3.1.. Расчёт энтропии реакции, выраженной уравнением

4NH 3(г) + 5O2 (г) = 4NO(г) + + 6Н2O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе­ратуры, при которых допустимо приближение (3.4), т.е ΔS773≈ ΔS0298 . Значение стандартной энтро­пии реакции, рассчитанной по формуле (3.3), равно:

ΔS773 ≈ ΔS0298 = (4S0298.no + 6S°298.H2O) — (4S0298.nh3 + 5S0298.02) = (4*210,62 + 6*188.74) — (4*192,5 + 5*205,03) = 179,77Дж/К

__________________________________

1* Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) — кристаллическое, (т) — твёр­дое, (ж) — жидкое, (г) — газообразное, (р) — растворённое.

2* По определению,ΔН0298обр простых веществ равны нулю.

3* ΔH0298обрО2. в формуле не фигурирует ввиду её равенства нулю.

Посколькуэнтропия характеризует степень неупорядоченности системы (её хаотичность)знак изменения энтропии (знак ΔS) можно оценить по уравнению реакции. В рассмотренном примере 3.1 увеличение энтропии (ΔS>0) происходит в связи с увеличением числа молей газа: согласно уравне­нию реакции из 9 молей реагирующих газов образуется 10 молей газообразных продуктов.

: 2015-05-08; view: 1322; Нарушение авторских прав

Источник