Тяготение тела к земле давление тела на какую нибудь поверхность

Содержание статьи

Определение и вывод закона всемирного тяготения

Тяготение – привычное явление для каждого живого существа на Земле, на первый взгляд, не требующее объяснений. Описывает это явление закон всемирного тяготения. Однако стоит углубиться в данную тему чуть больше, так сразу возникает ряд вопросов, для ответа на которые потребуются постулаты классической механики Ньютона, а также теории относительности и базирующейся на ней теории квантовой гравитации.

Что такое всемирное тяготение

Земля — это большой магнит, который притягивает к себе всё, что находится рядом: и карандаш, случайно выскользнувший из пальцев рук, и астероид, пролетающий мимо. С начала развития науки учёные давали своё видение и определение явлению всемирного тяготения, но только в 1687 году в фундаментальной работе Исаака Ньютона «Математические начала натуральной философии» было доказано его существование и воздействие на окружающие объекты.

математические начала натуральной философии

Интересный факт. Одно из первых изданий книги «Principia Mathematica» было продано на аукционных торгах за 3,7 миллиона долларов.

Основываясь на известные к тому времени эмпирические соотношения Иоганна Кеплера, описывающие гелиоцентрическую картину мира, Ньютон определил закон, согласно которому все тела притягиваются друг к другу.

гелиоцентрическая система мира

Причём сила взаимодействия растёт с увеличением массы и в то же время связана с расстоянием между объектами обратной квадратичной зависимостью, т.е.:

F = G∙(m1∙m2/ r2)

Несмотря на то, что объектами относительно небольшой массы данное явление практически не воспринимается, именно гравитация управляет движением астрономических тел, а формулировка закона позволяет объяснить, почему планеты движутся вокруг Солнца, а Луна – вокруг Земли.

Природа силы всемирного тяготения

Если важная роль гравитации в работе Вселенной понятна и неоспорима, то дать чёткий ответ на вопрос, откуда эта сила появляется, гораздо сложнее. В первой половине XX века Альберт Эйнштейн предложил специальную и общую теории относительности, в которых раскрыл своё видение природы всемирного тяготения. Согласно учёному, пространство и время представляют собой пространственно-временной континуум – четырёхмерное пространство, одно из измерений которого – время. Но так как люди воспринимают окружающее их пространство и течение времени в отдельности друг от друга, то они видят лишь проекцию континуума. Эйнштейн предположил, что гравитация возникает вследствие того, что тела, обладающие массой, вызывают деформацию пространства при проецировании на него четырёхмерного континуума.

деформация пространства телом большой массы

Более понятной идея учёного будет выглядеть, если проиллюстрировать её с помощью двух шаров разной массы и обычного листа бумаги. Допустим, что лист держат за края в горизонтальном положении, а в его центр помещают один из шаров, более тяжёлый. Естественно, бумага прогнётся. Покатив по прямой линии лёгкий шарик, наблюдатель обнаружит, что его траектория является дугообразной, стремящейся к первому, более тяжёлому шару. Причём, с позиции шара меньшей массы, его движение продолжает быть прямолинейным. В этой иллюстрации и заключено упрощённое видение возникновения гравитации как явления.

История открытия закона всемирного тяготения

Существует легенда, согласно которой Ньютон, прогуливаясь по саду и наблюдая за луной, увидел, как падает на землю яблоко (в другой версии, это яблоко упало на голову учёного). В этот же момент он подумал, что, есть вероятность, что одна и та же сила удерживает спутник на небе и заставляет фрукты падать с веток деревьев. Эта догадка и послужила началом работы над законом притяжения.

Сегодня историки сомневаются в этом мифе, что вполне объяснимо, однако главным фактом в истории остаётся то, что Ньютон был первым учёным, который осознал, что тела на Земле и в космосе испытывают на себе воздействие одной и той же силы. До этого момента люди делили гравитацию на два типа: первый отвечал за земное, несовершенное взаимодействие, второй – за небесное, заставляющее планеты двигаться по круговым, совершенным, траекториям.

Ньютон математически связал гравитацию и соотношения движения планет, выведенные Кеплером, прекращая тем самым ложное разделение физических устоев Земли и остальной Вселенной.

Интересный факт: существует мнение, что Ньютон вывел закон всемирного тяготения гораздо раньше публикации «Начал». Однако известное на тот момент расстояние от Земли до Луны не подтверждало его теорию, но как только цифры были уточнены и исправлены, всё подтвердилось.

Вывод закона всемирного тяготения

Исаак Ньютон описал свою математическую модель гравитационного воздействия, рассматривая движение Луны вокруг Земли.

Притяжение тел к земле

Известно, что радиус Земли составляет RЗ = 6370 километров, а всякий объект на её поверхности, обладает ускорением свободного падения g = 9,81 м/с2.

Интересный факт: учёными выявлена зависимость g от широты: на экваторе значение меньше принятого – 9,79 м/с2, а на полюсах достигает 9,83 м/с2.

Притяжение Земли и Луны

Известно, что Луна вращается вокруг Земли, двигаясь по круговой орбите радиусом RЛ = 384000 километров, период обращения при этом равен T = 27,3 суток. Для того чтобы численно прикинуть, насколько орбита Луны больше радиуса Земли, требуется разделить имеющиеся величины друг на друга, то есть:

RЛ / RЗ = 384000 / 6370 ≈ 60.

По полученным результатам очевидно, что путь от планеты до спутника включает в себя 60 радиусов Земли.

Ускорение в формуле всемирного тяготения

Луна притягивается к ней с ускорением, которое называют центростремительным. Известно, что центростремительное ускорение находят по формуле:

a = ω2∙R,

где ω – угловая скорость движения;

R – радиус окружности, по которой происходит движение.

Угловая скорость ω и период обращения Т связаны между собой соотношением:

ω = 2π / T.

центростремительное ускорение

Подставляя это равенство в формулу ускорения и преобразуя её путём подстановки индексов к некоторым величинам, получаем:

aЛ = (2π/T)2∙ RЛ,

где aЛ – ускорение Луны;

RЛ – орбита Луны или расстояние от неё до Земли.

Перед тем, как получить численное значение искомого ускорения, требуется перевести размерности всех компонентов в соответствии с Международной системой единиц (СИ):

  • период Т = 27,3 суток = 655,2 часа = 39312 минут = 2358720 секунд;
  • расстояние R = 384000 километров = 384 ∙106 метров.

Таким образом, спутник движется с ускорением:

aЛ = (2∙3,14 / 2358720)2∙ 384 ∙106 = 2,72∙10-3 м/с2.

ускорение движения луны

Сравнивая полученную величину со значением g, получаем:

g/ aЛ = 9,81 / 2,72∙10-3 ≈ 3600 = 602.

То есть ускорение, получаемое на орбите Луны, в 602 раз меньше ускорения, которое приобретается на поверхности Земли, при этом спутник находится в 60 раз дальше, то есть напрашивается предположение, согласно которому ускорение обратно пропорционально значению расстояния, возведённому в квадрат:

Читайте также:  Какое сегодня давление тольятти

aЛ ~ 1/ (RЛ)2.

Второй и третий законы Ньютона в выводе формулы тяготения

Второй закон Ньютона утверждает, что ускорение a, которое получает тело, прямо пропорционально зависит от равнодействующей сил F, которые приложены к этому телу, и находится в обратной зависимости от его массы m:

a= F / m.

Исходя из этого, напрашивается утверждение, что характер приращения силы идентичен характеру приращения ускорения, то есть:

F ~ a.

второй закон ньютона

А так как уже было выдвинуто предположение, что ускорение имеет обратно пропорциональную зависимость от квадрата расстояния, то у силы, действующей на тело, такой же характер, то есть:

F~ 1/ (RЛ)2.

В это же время известно, что по третьему закону Ньютона взаимодействие тел между собой становится причиной возникновения сил, направленных в противоположные стороны, но одинаковых по модулю:

где F12 – сила, с которой первое тело воздействует на второе;

F21 – сила, действия второго тела на первое.

третий закон ньютона

Таким образом, не только Земля притягивает к себе свой спутник, но и наоборот. А так как по второму закону Ньютона приращение силы прямо зависит не только от приращения ускорения, но и массы, то можно утверждать, что притяжение между Луной и Землёй соответствует записи:

F ~ mЛ∙mЗ,

где mЛ – масса Луны;

mЗ – масса Земли.

Знак умножения здесь получен в результате конъюнкции – логической операции, синонимами которой являются «логическое умножение» и «И» (потому что на притяжение влияет и масса Луны, и масса Земли).

Формула всемирного тяготения

Суммируя полученные вычисления и предположения, можно вывести запись:

F ~ mЛ∙mЗ/ (RЛ)2.

Но так как данное соотношение действует не только на нашу планету и её спутник, а на все объекты, то полученный вид следует слегка преобразовать:

F ~ m1∙m2/ R2,

где F – сила притяжения, возникающая при взаимодействии двух тел;

m1,2 – масса первого и второго тела;

R – расстояние.

определение закона всемирного тяготения

Для того чтобы пропорциональность стала равенством, требуется специальный коэффициент G, называемый гравитационной постоянной. После его введения итог совершённых преобразований получает название формулы закона всемирного тяготения:

F = G∙(m1∙m2/ R2)

В чём измеряется сила притяжения

В СИ размерность любой силы — это ньютоны (Н), следовательно, сила притяжения измеряется в тех же величинах. Ньютоны считаются производными единицами, которые формируются установленными основными. Таким образом, ньютон это отношение килограмма (кг) к отношению метра (м) на секунду в квадрате (с2), то есть Н = кг / (м/с2) .

До 1960 года (дата принятия СИ) использовали СГС (сантиметр-грамм-секунда или абсолютная физическая система единиц), а сила имела размерность дины. По определению 1 дина = 1 г/ (см/с2), следовательно, ньютоны и дины отличаются на пять порядков, то есть: 1 Н = 105 дин.

Гравитационная постоянная

Значение постоянной G приравнивается силе притяжения двух точечных тел, обладающих массой один килограмм и расположенных в одном метре. Согласно СИ,

G = 6,67∙10-11 Н∙м²·кг−2.

Интересный факт: значение коэффициента пропорциональности было определено Генри Кавендишем только в 1798 году, спустя 111 лет после опубликования труда Ньютона.

Опыт Кавендиша

Чтобы определить гравитационную постоянную, был проведён эксперимент, где главную роль играли крутильные весы – устройства, представляющего собой прочную стальную проволоку, на которой расположено горизонтальное коромысло, утяжелённое по краям двумя одинаковыми шарами из свинца. Масса каждого составляла 730 грамм.

В ходе эксперимента Кавендиш приближал к маленьким шарикам большие, весом 158 килограмм, подвешенные также на коромысле. При подведении тяжёлых шаров возникала сила взаимного притяжения, поворачивающая коромысло и закручивающая проволоку, что вызывало появление силы упругости, противодействующей притяжению шаров. В определённый момент сила гравитационного взаимодействия уравновешивалась с силой упругости закрученной проволоки. Регистрируя оптическими устройствами отклонения шаров и сравнивая силы, действующие на систему, Кавендиш вычислил значение коэффициента.

Инфографика-вывод закона всемирного тяготения

Сила тяжести как частный случай закона всемирного тяготения

Создав математическую модель притяжения, Ньютон установил, что сила тяжести, чьё влияние видел и испытывал на себе каждый, является лишь одним из проявлений всемирного тяготения, которое утверждает, что все тела во Вселенной, включая планеты, звёзды, астероиды и т.д., воздействуют друг на друга с определённой силой.

Чтобы узнать значение этой силы, исходящей от Земли, нужно воспользоваться формулой, выражающей прямо пропорциональную зависимость воздействия и массы объекта:

Fтяж = g∙m,

где g = G∙(mЗ / RЗ2),

сила тяжести

На поверхности значение ускорения свободного падения принимают равным 9,81 м/с2. Если же тело удалено от поверхности Земли, значение g можно найти по формуле:

g = G∙(mЗ / (RЗ+h)2),

где h – расстояние до земли.

Таким образом, действие силы тяжести на тело уменьшается с увеличением высоты.

Интересный факт: если принять силу тяжести, действующую на Земле, за единицу, то можно проанализировать значение притяжения на поверхности других небесных тел. Так, самое большое воздествие тяготения испытает на себе тело на поверхности Юпитера – 2,442, а самое маленькое – на Луне (0,165).

В каких случаях справедлив закон всемирного тяготения

Выявленная Ньютоном зависимость имеет ограничения в области применения. Так, закон справедлив только в случаях, когда:

  1. тела можно принять материальными точками, то есть их размеры настолько малы по отношению к расстоянию, что ими можно пренебречь;
  2. тела обладают сферической формой, что свидетельствует об однородном распределении массы внутри них;
  3. одно из тел – шар большого диаметра, а второе имеет несопоставимо маленькие размеры.

когда справедлив закон всемирного тяготения

Соотношение неприменимо, если требуется описать взаимодействие шара и стержня бесконечной длины. В этом случае сила притяжения будет пропорциональна не квадрату расстоянию, а его модулю. А если существует потребность определить тяготение между бесконечной плоскостью и телом, расстояние вообще не будет иметь влияния.

Применение закона всемирного тяготения

Закон всемирного тяготения – это фундаментальный закон механики, после формулировки которого стало возможно объяснение и предсказание множества природных явлений. К ним относятся:

  • приливы и отливы;
  • точное время и место лунных и солнечных затмений;
  • масса Солнца и других астрономических тел;
  • орбиты движения планет и их спутников.

Открытие планет с использованием закона всемирного тяготения

После открытия явления притяжения астрономы и физики могли, опираясь на закон Ньютона и соотношения Кеплера, определять траектории движения наблюдаемых планет Солнечной системы и указывать их координаты в любой момент времени, причём правильность вычислений подтверждалась эмпирически – результатами астрономических наблюдений.

В 1781 году Уильямом Гершелем была открыта седьмая планета Солнечной системы – Уран. Следуя отработанному алгоритму, астроном рассчитал траекторию своего открытия и его орбиту, однако в первой половине XIX века учёные обнаружили несоответствие вычисленных и реальных координат. Возникло предположение, что, помимо Солнца и шести других планет, на Уран воздействует ещё одна планета, находящаяся за ним.

В 1846 году ночью 23 сентября на основании теоретических расчётов, выполненных по имеющимся отклонениям Урана от рассчитанной траектории, молодым сотрудником Британской обсерватории Иоганном Галле была обнаружена предсказанная планета, названная Нептуном.

планета Нептун

Интересный факт: расчёты, после проведения которых стало возможно открытие, в одно и то же время совершили два учёных, независимо друг от друга – Джон Адамс и Урбен Леверье.

Спустя практически 100 лет, 18 февраля 1930 года, подобным образом была открыта девятая планета – Плутон, которая из-за относительно небольших размеров и массы считается карликовой.

Закон всемирного тяготения. Примеры из жизни

Притяжение испытывает на себе любой объект во Вселенной. В обычной жизни действие этого закона можно наблюдать в каждом явлении падения тел с высоты, будь то листок с дерева, камень, капли дождя, горные обвалы и оползни.

Кроме этого, тяготение проявляется в наличии веса у каждого объекта – силы, с которой тело воздействует на опору, препятствующую его дальнейшему падению к центру Земли.

Границы применимости

Несмотря на то, что закон всемирного тяготения Ньютона объясняет работу множества явлений, в конце XIX века было выявлено несоответствие наблюдаемого и рассчитанного смещения перигелия Меркурия. Эта особенность движения планеты не объяснялась известным законом, что потребовало новое понимание гравитации.

Кроме того, на рубеже веков применимость классической механики, основанной на законах Ньютона, подверглась ограничениям. Получение точных результатов с её помощью возможно только в случаях, когда:

  • скорость тел гораздо меньше скорости звука;
  • размеры объектов гораздо больше размеров атомов и молекул;
  • скорость распространения гравитации считается бесконечной.

Дальнейшее развитие

С момента создания теории притяжения многие учёные, не разделявшие научных взглядов Ньютона, стремились усовершенствовать его закон. А возникновение трудностей XIX века, подвергших сомнению основы, потребовало внесение коррективов, которые могли бы объяснить расхождение наблюдаемого и рассчитанного. В 1915 году Альберт Эйнштейн создал общую теорию относительности (ОТО), которая объяснила смещение перигелия Меркурия и сегодня является самой перспективной теорией гравитации, доказанной множеством экспериментов.

ОТО имеет чётко выраженные границы применимости, что выражается, например, в невозможности её применения при рассмотрении квантовых эффектов. Поэтому потребовалась новая теория, в которой уже сегодня стремятся объединить теорию относительности Эйнштейна и квантовую механику. Две указанные теории основываются на различных наборах постулатов, но, несмотря на это, квантовая гравитация – одно из основных и перспективных направлений для физических исследований.

Выводы

Все тела во Вселенной взаимно притягиваются, это явление называется гравитацией. Сила притяжения, которая действует между двумя объектами, тем больше, чем больше их массы, в то же время тяготение уменьшается с увеличением расстояния.

После прочтения данной статьи ответ на вопрос, как формулируется закон всемирного тяготения, обязательно будет быстрым и правильным. Однако важно не забывать, что формула, описанная Ньютоном, справедлива только для конкретно описанных случаев.

Более того, несмотря на существование и подтверждение новых гипотез, ньютоновская механика, включая закон всемирного тяготения, является наиболее простой из существующих теорий и верно описывает природные явления в своих границах.

Источник

Тяготение тела к земле давление тела на какую нибудь поверхность

Закон всемирного тяготения. Что, как и почему?

Вероятно, каждый еще с детства знает о существовании гравитации. Но так было не всегда. Гравитация, конечно, существовала, но до определенного времени никто не задумывался о том, как это происходит.

В XVII по одной из версии Исаак Ньютон увидел, как с дерева на землю падает яблоко, и к нему пришло озарение. Ведь и Луна находится на небосклоне неподвижно, а не улетает куда-то вдаль. Совпадение?

Ньютон задумался над тем, что на все тела действует некая сила, которая заставила притягиваться к Земле. Но почему не падает Луна? Представим пушку, которая выстреливает ядром на определенное расстояние. Ядро пролетает некоторое расстояние над Землей, а потом падает. Если мы с большей силой запустим ядро, оно не будет касаться земли куда дольше. Выстрелив с еще большей силой, мы запустим ядро так далеко, что пролетев определенное расстояние, оно достигнет скругления Земли и выйдет на орбиту. Ядро не будет падать на Землю, потому что величина расстояния, на которое оно будет снижаться, будет соответствовать искривлению Земной поверхности. Таким образом, Ньютон заключил, что сила притяжения будет подчиняться закону обратных квадратов. Говоря простым языком, находясь на некотором расстоянии от тела, и увеличив это расстояние вдвое, вы уменьшите силу притяжения вчетверо. Чем меньше расстояние, тем сильнее притяжение.

Любое тело создает силу притяжения пропорциональное его массе и совпадает с расстоянием. Но тела должны быть достаточно массивны, для того, чтобы можно было наблюдать притяжение. То есть все звезды и планеты. Чем больше тело, тем сильнее к нему притягиваются другие, менее большие тела. Сила гравитации Земли равна примерно 9,81 метра в секунду в квадрате. В то время, как гравитация, к примеру, Эвереста будет равно всего 0,001% от Земной.

Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽ . Но круто, что есть гранты на учебу. Грант-на-вуз.рф это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ грант-на-вуз.рф

В законе всемирного тяготения объединилось понимание всех орбит планет и гелиоцентрическая модель Кеплера. Благодаря этому закону, ученые смогли обнаружить Нептун (8-я планета солнечной системы). Они обнаружили, что траектория движения Урана (7-я планета солнечной системы) вокруг солнца немного искажена, как будто в некоторых местах, она притягивается другой планетой. После проведенных вычислений, ученые смогли дать прогноз, где нужно искать новую планету, и она сразу же была обнаружена.

Этот же закон объясняет приливы и отливы. Все дело в том, что Луна притягивает к себе воду, но на разных сторонах Земли, это происходит с разной силой. А Земля притягивает к себе воду одинаково со всех сторон. Такие различия в гравитационном притяжении заставляют воду двигаться в направлении к Луне или от нее, образовывая таким образом отливы и приливы.

Обобщив сказанное, подытожим – закон всемирного тяготения заключается в том, что сила гравитационного притяжения (F) между двумя материальными точками с массами m1 и m2 , разделёнными расстоянием (R) , действует вдоль соединяющей их прямой, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния:

Где G — гравитационная постоянная Земли равная 6,674 30(15)⋅10⁻¹¹ м³·кг⁻¹·с⁻²

Напоминаем про сервис грант-на-вуз.рф . Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишь от 300 ₽ до 100 000 ₽, перейдя по ссылке грант-на-вуз.рф !

Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:

Источник

СПАДИЛО.РУ

теория по физике ???? динамика

Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.

Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.

Закон всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.

F — сила всемирного тяготения, m1и m2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная (G = 6,67∙10 –11 Н ∙ м 2 /кг 2 ).

Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.

Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m1= 1 кг и m2= 1 кг, то F = G.

G = 6,67∙10 –11 Н ∙ м 2 /кг 2 .

Сила тяжести

Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.

Читайте также:  Какое давление при сахарном диабете 2 типа

Сила тяжести — сила, с которой Земля притягивает к себе тела.

Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.

Расчет силы тяжести на Земле

Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:

Вывод формулы ускорения свободного падения

Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.

Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.

Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:

Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:

Формула расчета ускорения свободного падения

Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.

Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙10 22 кг.

Переведем километры в метры: 1736 км = 1736000 м.

Первая космическая скорость

Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.

Определение Первая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.

Вывод формулы первой космической скорости

Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:

Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.

Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:

Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:

Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:

Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:

Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.

Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:

8 км/с — первая космическая скорость Земли.

Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙10 24 кг, а ее радиус равен 6052 км.

Источник

Просто о законе всемирного тяготения (часть 1)

Рассуждения о законе всемирного тяготения, об истории его открытия и оригинальном опыте на Луне — об этом, и еще о многом интересном в данной статье.

Аристотель. Вот так задачка…

Великий Аристотель (384 – 322 г.г.) нам известен как «человек-оркестр»: он и физик, он и лирик, он и воспитатель Александра…

Аристотель полагал, что тяжелый камень падает на землю быстрее, чем легкий – чем тяжелее тело, тем больше его скорость падения. Существует легенда, что Аристотель поставил перед своими учениками логическую задачу: что быстрее упадет на землю – камень без пера или камень с пером. Перо летит медленно, камень падает быстро. Камень с пером будет замедляться из-за парения пера в эфире (так греки называли воздух), с другой стороны – камень с пером станет немного тяжелее камня без пера и падать будет быстрее.

Современный человек легко бы сказал – надо проверить. Но Аристотель не мог проверить. Точнее, не стал бы проверять – кидать камни с перьями или камни без перьев. Не царское это дело. Точнее, не дело свободного человека. В Античности физический труд считался уделом рабов. Свободный эллин расценивал физический труд как нечто постыдное. Можно было бы заставить раба кидать камни с перьями и камни без перьев. Но опять – наблюдение за опытом – это не созерцание, не работа великого ума. Иначе постыдный труд стал бы судьей великого УМА.

Именно благодаря созерцательной физике Аристотель заложил основы механики. Его законы звучали так:

«Движения бывают естественные и насильственные»

«Движется только движимое какой-либо силой»

«Скорость падения пропорциональна весу падающих тел».

Эта точка зрения существовала в науке почти две тысячи лет. А задача про камни с перьями так и оставалась долгое время не решенной, пока .

Галилей начал решать задачу?

Галилео Галилей (1564-1642) опытным путем установил, что падение тела на планету зависит от ускорения свободного падения.

Именно он подверг сомнению задачу Аристотеля. Если скрепить вместе камень и перо (легкое и тяжелое тело), то вместе они должны упасть быстрее, т.к. они становятся тяжелее.

Существует легенда, что Галилей с Пизанской башни (а она наклонная – это знают все) кидал на землю со своими учениками камни разной величины, в том числе и камни с перьями. Многие историки считают, что это вымысел – желание привлечь внимание к личности ученого. А как считаете Вы, мой дорогой читатель? Жду ваших комментариев.

Великий Галилей замыслил грандиозный опыт – иначе не был он Великим. И решил с Пизанской башни кинуть самое большое ядро и маленькую дробинку. С дробинкой проблем не было – найти можно всегда. А вот большое ядро – проблема еще та. И куда надо обращаться за решением проблем? Правильно, к великому русскому царю. Михаилу Федоровичу Романову. Поступило прошение об одолжении ядра от Царь-пушки для опытов Галилея. Ядро было доставлено, но его размеры не позволяли поднять на вершину узкой башни. Власти, весьма уважая Галилея, затеяли реконструкцию башни. Но великий ученый подвел своих земляков – умер…

А задача про камни с перьями так и оставалась долгое время не решенной, пока на Луне…

Спасибо что зашел на канал мой дорогой читатель, я старалась для тебя, отблагодари подпиской.

Источник

Источник