Теплопроводность продукта относится к каким свойствам

Содержание статьи

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ТОВАРОВ

К общим теплофизическим свойствам относятся температура, теплоем­кость и теплопроводность. Единичные экземпляры товаров и их товарная масса характеризуются неоднородной струк­турой, что обусловлено химическими свойствами и соста­вом, строением, а также наличием аэропространства меж­ду отдельными товарами и/или упаковками в товарной партии. Это обусловливает общность и различия показате­лей, характеризующих теплофизические свойства.

Температура- основная физическая величина, кото­рая характеризует теплодинамическое состояние как еди­ничных экземпляров товаров, так и их совокупностей — товарных партий.

Температура товара и товарной партии зависит от тем­пературы окружающей среды. При перемещении товаров из одной среды в другую возникают перепады температу­ры, что может вызвать выпадение конденсата на таре и товарах, а также их увлажнение. Вследствие этого могут увеличиться масса товаров, произойти нежелательные ка­чественные изменения (микробиологическая порча, корро­зия металлов и т.п.).

Температура товаров и товарных партий существенно влияет на их сохраняемость. При высокой температуре увеличивается интенсивность биохимических, микробиоло­гических и некоторых физических процессов (например, усушка), вследствие чего возрастают потери, ухудшается сохраняемость товаров, сокращаются сроки хранения. Низ­кие температуры, снижая интенсивность многих процес­сов, также могут вызывать негативные явления (замерза­ние, застуживание). Поэтому оптимальная температура товаров индивидуальна для каждой товарной группы или даже вида. Например, температура молока должна быть не выше 8°С, но не ниже 0°С.

Особенно важен этот показатель для скоропортящихся пищевых продуктов. Для некоторых из них даже регламен­тируется в стандарте температура самого товара (напри­мер, для молока). В большинстве случаев устанавливается температура не товара, а температурный режим хране­ния, что не всегда одно и то же.

Теоретически температура товара, товарной партии и окружающей среды (температурный режим хранения) должна совпадать, однако практически этого не всегда удается достигнуть, что обусловлено разной теплоем­костью и теплопроводностью единичных товаров, товар­ных партий и воздушной окружающей среды, влияющих на скорость выравнивания температуры всех указанных объектов.

Теплоемкость- количество тепла, необходимое для повышения температуры объекта определенной массы в определенном интервале температур.

Показателем теплоемкости служит удельная теплоем­кость, которая определяется количеством тепла, необхо­димым для повышения температуры 1 кг продукта на 1°С. Выражается показатель в Дж/0С или Дж/(кг • К), где К — градус Кельвина. Удельная теплоемкость воды равна 1, углеводов — 0,34, жиров — 0,42, белков — 0,37 Дж/°С.

Теплоемкость (С) рассчитывается по формуле:

,

где Q — количество тепла, Дж;

t1и t2 — начальная и конечная температура тела, град.

Удельная теплоемкость разных товаров неодинакова, о чем свидетельствуют данные о теплоемкости пищевых про­дуктов, приведенные в табл. 1.

Таблица 1. — Удельная теплоемкость и коэффициент теплопроводности

отдельных пищевых продуктов

Наименование продуктовУдельная тепло­емкость сухих ве­ществ, Дж/(кг-К)Коэффициент теплопровод­ности, Вт/(м • К)
Овощи Мясо (разные ткани) Рыба (разных видов) Молочные продукты1298-1465 1465-1675 1147-1633 1717-56200,60-0,62 0,41-0,56 0,43 -0,55 0,13-0,20

Теплоемкость товаров зависит от их химического со­става и температуры, а товарных партий — еще и от аэро­пространства внутри товарной партии. С увеличением влаж­ности и температуры теплоемкость, как правило, увели­чивается.

Удельная теплоемкость рассчитывается для определе­ния количества тепла, которое нужно передать товару для его нагревания или отнять для его охлаждения. Этот пока­затель применяется для расчета потребностей в холодиль­ном оборудовании или кондиционерах для обогрева.

Теплопроводность продукта относится к каким свойствам

Теплопроводность- количество тепла, которое про­ходит через массу объекта определенной толщины и пло­щади в фиксированное время при разности температур на противоположных поверхностях в один градус. Показателем этого свойства является удельная тепло­проводность, или коэффициент теплопроводности, кото­рая характеризуется количеством тепла, проходящего через массу продукта толщиной 1 м на площади 1 м2 за 1 ч. при разности температур на противоположных поверхнос­тях в один градус.

Единица измерения удельной теплопроводности (λ):

Расчет показателя проводят по формуле:

где Q — количество тепла, прошедшее через слой продукта, кДж;

а — толщина слоя, м;

S — площадь поверхности, м2;

t1-t2 — разность температур на противоположных поверхностях, град;

Z — время, ч.

Коэффициент теплопроводности воздуха равен 0,092

сухих веществ — 0,42 — 0,84 .

Очень высокую теплопроводность имеет вода — 2,13 .

Поэтому чем больше в товарной партии аэропространство и ниже влажность товаров, тем меньше теплопроводность. Следовательно, сухие товары с высокой скважистостью медленнее охлаждаются. Поэтому заданные режимы с по­ниженной температурой для сухих товаров устанавлива­ется дольше, чем для влажных или для товаров, не имею­щих аэропространства, но обладающих непрерывной вод­ной фазой. Так, маргарин, расфасованный в коробки моно­литом, охлаждается быстрее, чем маргарин в пачках, или сливочное масло в коробках. Коэффициенты теплопроводности некоторых пищевых продуктов представлены в табл. 1.

Чрезвычайно важно учитывать теплопроводность пи­щевых продуктов, которые хранятся при пониженной тем­пературе (мясо, рыба, плоды и овощи, молочные товары), а также товаров, выделяющих физиологическое тепло (мука, крупа, свежие плоды и овощи). В случае отсутствия еди­ной холодильной цепи в процессе товародвижения тепло­проводность необходимо принимать во внимание при опре­делении предельного времени нахождения товара на опре­деленном этапе движения, а также времени достижения ус­тановленных режимов хранения. В противном случае могут произойти нежелательные изменения товара и в конечном счете — его порча.

Коэффициент теплопроводности используется при оценке качества материалов для изготовления одежды и обуви, характеристике теплоизоляционных материалов. Материалы с низким коэффициентом теплопроводности (вата, мех, пенополиуретан, синтепон, перо, пух и т. п.) применяют в качестве утеплителей для зимней одежды, обуви.

Теплопроводность товарных партий зависит от тепло­проводности единичных экземпляров, параметров штабе­ля, а также способа размещения товаров в штабеле или насыпи. Для повышения теплопроводности штабеля с ящи­ками применяют такие способы укладки, как шахматная, «пятериком» или «колодцем».

Источник

Теплопроводность

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 декабря 2020; проверки требуют 8 правок.

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Различают стационарный и нестационарный процессы теплопроводности в твердом теле. Стационарный процесс характеризуется неизменными во времени параметрами процесса. Такой процесс утанавливается при длительном поддержании температур теплообменивающихся сред на одном и том же уровне. Нестационарный процесс представляет собой неустановившийся тепловой процесс в телах и средах, характеризуемый изменением температуры в пространстве и во времени.

Читайте также:  Какие продукты необходимы в 10 месяцев

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье[править | править код]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (удельная теплопроводность), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где — полная мощность тепловой передачи, — площадь сечения параллелепипеда, — перепад температур граней, — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью[править | править код]

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где — постоянная Больцмана, — заряд электрона, — абсолютная температура.

Коэффициент теплопроводности газов[править | править код]

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

где — плотность газа, — удельная теплоёмкость при постоянном объёме, — средняя длина свободного пробега молекул газа, — средняя тепловая скорость. Эта же формула может быть записана как[3]

где — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа , для одноатомного ), — постоянная Больцмана, — молярная масса, — абсолютная температура, — эффективный (газокинетический) диаметр молекул, — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах[править | править код]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): , где — размер сосуда, — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье[править | править код]

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ[править | править код]

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001-2600
Графит278,4-2435
Арсенид бора[en]200-2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202-236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97-111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47-58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5-12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1-1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2-0,7
Силиконовое масло0,16
Пенобетон0,05-0,3
Газобетон0,1-0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10-0,15
Пенополистирол (горючесть Г1)0,038-0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029-0,032
Стекловата0,032-0,041
Каменная вата0,034-0,039
Пенополиизоцианурат (PIR)0,023
Пенополиуретан (поролон)0,029-0,041
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Диоксид углерода (273-320 K, 100 кПа)0,017
Аргон (240-273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Примечания[править | править код]

  1. ↑ Фурье закон // Естествознание. Энциклопедический словарь.
  2. ↑ Д.В. Сивухин. Общий курс физики: термодинамика и молекулярная физика. — М.: Физматлит, 2006. — С. 345.
  3. ↑ Исследование теплопроводности газов. (недоступная ссылка) // Методические указания.
  4. ↑ J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
  5. ↑ C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.
  6. ↑ Merkblatt 821 Архивная копия от 8 августа 2014 на Wayback Machine (PDF; 614 kB); Сталь нержавеющая, свойства стали (нем.), таблица 9

См. также[править | править код]

  • Теплопередача
  • Конвекция
  • Равновесный градиент температуры
  • Тепловое излучение
  • Закон Ньютона — Рихмана
  • Уравнение диффузии
  • Теплоизоляция

Ссылки[править | править код]

  • Теплопроводность воды и водяного пара
  • Коэффициенты теплопроводности элементов
  • Таблица теплопроводности веществ и материалов
Читайте также:  В каких продуктах содержится полисахарид

Источник

XI Международная студенческая научная конференция
Студенческий научный форум — 2019

Текст работы размещён без изображений и формул.

Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Питание является одним из самых значимых вопросов для любого человека. Знание физических свойств пищевых продуктов в значительной мере определяют их качество, способность к длительному хранению и транспортированию. От правильного хранения продуктов зависит здоровье и продолжительность жизни человека, которые эти продукты потребляет.

Физические процессы изменяют состояние и свойства продуктов, влияют на активность биохимических и химических процессов. Основные физические изменения (увлажнение и высыхание) приводят к изменениям массы продукта. При погрузочно-разгрузочных работах и транспортировании происходят механические воздействия (лом макаронных изделий, бой яиц, ушибы, повреждения плодов, овощей, деформация хлебобулочных изделий), которые ухудшают качество продуктов. Для предупреждения механических воздействий необходимо бережное обращение с товаром при разгрузке и перевозках.

1 Физические свойства пищевых продуктов

Под функциональными свойствами понимают физико-химические и другие характеристики, определяющие поведение продукта при хранении и переработке, а также обеспечивающие желаемую структуру, технологические и потребительские свойства готовых изделий. В отдельных случаях для определения функциональных свойств продукта используют термин «технологические свойства».

К физическим свойствам пищевых продуктов относят структурно-механические свойства, сыпучесть, способность к самосортированию, скважистость, сорбционные, теплофизические, оптические и электрофизические свойства.

Структурно-механические свойства

Структурно-механические свойства — особенности продукта, проявляющиеся при ударных, сжимающих, растягивающих и других воздействиях. Эти свойства характеризуют способность продуктов сопротивляться приложенным внешним силам или изменяться под их воздействием. К ним относятся прочность, твердость, упругость, эластичность, пластичность, вязкость.

Прочность, т. е. способность твердого тела сопротивляться разрушению при приложении к нему внешней силы при растяжении или сжатии — одно из важнейших структурно-механических свойств. Прочность материала зависит от его структуры и пористости. Материалы, имеющие линейное расположение частиц и меньшую пористость, более прочные. Чем прочнее единичный экземпляр продукта, тем меньше он разрушается или деформируется. Прочность имеет важное значение для качественной характеристики таких продовольственных товаров, как макароны, сахар-рафинад, печенье, плоды, овощи и др. Если пищевые продукты недостаточно прочные, увеличивается количество лома, крошки.

Твердость — местная краевая прочность тела, которая характеризуется сопротивлением проникновению в него другого тела. Твердость продуктов зависит от их природы, формы, структуры, размеров и расположения атомов, а также сил межмолекулярного сцепления. На твердость кристаллических тел влияет кристаллизационная вода, которая ослабляет внутренние связи и уменьшает твердость. Твердость определяют при оценке степени зрелости свежих плодов и овощей, так как при созревании их ткани размягчаются. Уменьшение твердости косвенно влияет на сохраняемость плодов и овощей, особенно их устойчивость к микробиологическим повреждениям.

Деформация — способность объекта изменять размеры, форму и структуру под влиянием внешних воздействий, вызывающих смещение отдельных частиц по отношению друг к Другу. Деформация зависит от величины и вида нагрузки, структуры и физико-химических свойств объекта. Деформации могут быть обратимыми и необратимыми. При обратимой деформации первоначальные размеры, форма и структура тела после снятия нагрузки восстанавливаются полностью, при необратимой — не восстанавливаются. Способность к обратимым деформациям характеризуется упругостью и эластичностью, разница между которыми заключается во времени, в течение которого восстанавливаются исходные параметры. Необратимые деформации обусловлены плотностью.

Упругость — способность объекта к мгновенно обратимым деформациям. Этим свойством обладают хлебобулочные изделия, для которых упругие свойства мякиша являются одним из наиболее важных показателей, характеризующих степень свежести.

Сыпучесть

Сыпучесть — способность перемещаться по наклонным плоскостям. Все порошкообразные продукты (мука, крупы, сахар-песок и др.), а также состоящие из единичных экземпляров более или менее округлой формы (зерно, корнеплоды, овощи, многие плоды) обладают хорошей сыпучестью.

Хорошая сыпучесть многих продуктов позволяет легко перемещать их при помощи транспортеров, норий, шнеков, загружать в различные по форме емкости хранилищ. Эти продукты также легко перемещаются самотеком по наклонной плоскости. Сыпучесть характеризуют двумя показателями: углом трения и углом естественного откоса.

Под углом трения понимают наименьший угол, при котором масса продукта начинает скользить по какой-либо поверхности. Под углом естественного откоса, или углом ската, понимают угол между диаметром основания и образующей конуса, получающегося при свободном падении части массы продукта на горизонтальную поверхность. На сыпучесть продукта влияет много факторов, в первую очередь форма, размер, характер и состояние поверхности единичных экземпляров продукта, а также его влажность и наличие примесей. Влияет также род поверхности, по которой продукт перемещают.

Примеси, встречающиеся в массе продукта, как правило, понижают его сыпучесть. Например, при наличии значительного количества семян сорняков с цепкой, шероховатой поверхностью сыпучесть зерна может быть полностью потеряна. Такое зерно нельзя без предварительной очистки засыпать в силос элеватора, так как могут быть закупорены выпускные отверстия. С увеличением влажности продукта его сыпучесть значительно понижается.

Самосортирование

Любое перемещение сыпучих продуктов сопровождается самосортированием,

т. е. неравномерным распределением входящих в них компонентов по отдельным участкам насыпи. Самосортирование обусловлено неодинаковой сыпучестью компонентов массы, оно нарушает однородность массы продукта и создает условия, способствующие развитию нежелательных явлений. При свободном падении массы продукта (например, в процессе заполнения силоса элеватора) самосортированию способствует парусность, т. е. неодинаковое сопротивление, оказываемое воздухом каждой отдельной частичке. Вследствие самосортирования в насыпи продукта появляются участки, резко отличающиеся по своему составу. При хранении зерна и ряда других продуктов это крайне нежелательно, так как в тех участках, где скапливаются мелкие щуплые зерна или легкие примеси, начинаются активные физиологические процессы, что может привести к порче зерна.

Скважистость

Многие продукты не абсолютно плотно заполняют объемы. Остаются промежутки между твердыми частицами, которые заполнены воздухом. Наличие таких промежутков называется скважистостью. Образование скважин в массе продукта влияет на многие протекающие в нем физические и физиологические процессы. Скважистость позволяет продувать продукт воздухом или вводить в него пары различных веществ для обеззараживания.

От скважистости зависит объемная, или насыпная масса продуктов. Чем выше скважистость, тем меньше продукта поместится в емкость определенных размеров, поэтому скважистость продукта необходимо учитывать при проектировании хранилищ и транспортных средств.

Сорбционные свойства

Продукты обладают способностью поглощать (сорбировать) из окружающей среды пары различных веществ и газы. При определенных условиях может иметь место и обратный процесс — выделение (десорбция) этих веществ.

Значительная сорбционная емкость массы продукта объясняется двумя причинами: капиллярно-пористой коллоидной структурой единичных экземпляров и скважистостью массы продукта.

Один из видов сорбции — гигроскопичность, т. е. способность продуктов к поглощению водяных паров. Гигроскопические свойства имеют исключительное значение. Влажность продукта — один из важнейших факторов, обусловливающих стойкость его при хранении. Влагообмен между продуктом и воздухом может происходить в двух противоположных направлениях: десорбция — передача влаги от продукта воздуху, когда парциальное давление пара над поверхностью продукта выше, чем в воздухе; сорбция — принятие влаги из воздуха. Влагообмен между продуктом и воздухом прекратится, когда парциальное давление водяного пара в воздухе и над поверхностью продукта будет одинаковым, т. е. наступит динамическое равновесие. Влажность продукта, соответствующая этому состоянию, называется равновесной и повышается с увеличением влажности окружающей среды. Равновесная влажность при стационарных условиях окружающей среды (постоянной влажности и температуре) — величина постоянная. В зависимости от изменений внешней среды ее значение может изменяться от 7 до 36 %. Влажность продукта, равная 1%, является равновесной для воздуха с влажностью 15-20%, а 33-36%- для воздуха, полностью насыщенного водяными парами.

Величина равновесной влажности зависит от химического состава продукта. Так, у масличных культур при всех равных условиях величина равновесной влажности почти вдвое меньше, чем у зерновых. Это объясняется меньшим содержанием в масличных семенах гидрофильных коллоидов. При постоянной температуре зависимость между влажностью продуктов и влажностью воздуха выражается изотермой сорбции. Важным для практики является то, что влажность продуктов изменяется неравномерно. Наиболее значительно возрастает влажность продукта при относительной влажности воздуха в пределах 80-100 %. При влажности воздуха 75 % равновесная влажность злаковых 15-16 %, а в более насыщенном влагой воздухе она увеличивается вдвое и достигает 32-36 %.

Равновесная влажность зависит от температуры окружающего воздуха. С понижением температуры воздуха величина равновесной влажности возрастает (при понижении с 30 до О °С примерно на 1,5%).

Помимо этого имеет значение и так называемое явление сорбционного гистерезиса, выражающееся в несовпадении изотерм сорбции и десорбции.

Кривые равновесной влажности показывают, что различные пробы одного и того же продукта, находясь в состоянии равновесия с одной и той же средой, могут иметь различную влажность.

Оптические и электрофизические свойства

К оптическим свойствам относят прозрачность, цветность, рефракцию, оптическую активность. Эти показатели воспринимаются человеком посредством зрительных ощущений. Оптические свойства — важный показатель качества большинства продуктов питания.

Электрофизические свойства определяют поведение продуктов в электромагнитном поле. Основным показателем этих свойств является электропроводность. На этом показателе основано определение влажности и титруемой кислотности некоторых продуктов.

Теплофизические свойства пищевых продуктов

Любая масса продукта в целом обладает рядом теплофизических свойств, из которых наибольшее значение имеют теплоемкость и термовлагопроводность.

Температура продукта относится к важнейшим его характеристикам и зависит от температуры окружающей среды. При перемещении продуктов из одной среды в другую возникают перепады температуры, что может вызвать конденсацию и увлажнение. Вследствие этого могут увеличиться масса продуктов, произойти нежелательные качественные изменения (микробиологическая порча, коррозия металлов и т. п.).

Температура продуктов существенно влияет на их сохраняемость, поэтому устанавливаются ее оптимальные пределы для каждой товарной группы или отдельного продукта. Например, температура молока должна быть не выше 8 °С, но не ниже 0 ºС.

Теплоемкость

Теплоемкость — количество теплоты, необходимое для повышения температуры объекта определенной массы в определенном интервале температуры. Удельная теплоемкость воды равна 1 Дж/К, углеводов — 0,34, жиров — 0,42, белков — 0,37 Дж/К, поэтому теплоемкость продуктов зависит от их химического состава. С увеличением влажности и температуры теплоемкость увеличивается.

Удельная теплоемкость рассчитывается для определения количества теплоты, которое нужно передать продукту для нагревания или отвести от него для охлаждения. Этот показатель применяется для расчета потребностей в холодильном оборудовании или кондиционерах для обогрева, а также учитываются при расчетах теплового оборудования для приготовления пищи, при определении соотношения основных продуктов и фритюрного жира и других расчетах.

Термовлагопроводность

К важным теплофизическим процессам, происходящим в пищевой среде, относится термовлагопроводность. Суть этого процесса заключается в том, что при постепенном прогреве продукта, сопровождающемся перемещением теплоты из зон более нагретых в зоны с более низкой температурой, вместе с потоком теплоты устремляется и поток влаги. Вследствие этого между нагретыми и ненагретыми участками создается зона повышенной влажности, что может иметь негативные последствия. Явлением термовлагопроводности, например, объясняется то, что мякиш выпеченных мучных изделий может иметь несколько большую влажность по сравнению с тестом.

Характеризуя теплофизические свойства подавляющего большинства пищевых продуктов в целом, следует отметить, что они обладают большой тепловой инерционностью, т. е. медленно реагируют на изменение температуры окружающей среды. Значительная тепловая инерционность продуктов имеет как положительное, так и отрицательное значение. С одной стороны, большая тепловая инерция при правильно организованном хранении продуктов обеспечивает в них низкую температуру длительный период, даже в теплое время года, и тем самым консервирует их. С другой стороны, при наличии благоприятных условий для жизнедеятельности микроорганизмов и вредителей выделенная ими теплота может накапливаться в массе продукта и приводить к повышению температуры и самосогреванию.

ВЫВОДЫ

К физико-химическим свойствам пищевых продуктов относят структурно-механические свойства, сыпучесть, способность к самосортированию, скважистость, сорбционные и теплофизические и оптические свойства. Любая масса продукта в целом обладает рядом теплофизических свойств, из которых наибольшее значение имеют теплоемкость, температуропроводность, теплопроводность и термовлагопроводность. Температура продукта относится к важнейшим его характеристикам и зависит от температуры окружающей среды. При перемещении продуктов из одной среды в другую возникают перепады температуры, что может вызвать конденсацию и увлажнение. Вследствие этого могут увеличиться масса продуктов, произойти нежелательные качественные изменения (микробиологическая порча, коррозия металлов и т. п.).

СПИСОК ЛИТЕРАТУРЫ

Нечаев А.П. Пищевая химия. — СПб.: ГИОРД, 2001. — 592 с.

Электронный учебно-методический комплекс дисциплины «Физическая и коллоидная химия: учебно-методический комплекс дисциплины» Учебное пособие. ФГУП НТЦ «ИНФОРМРЕГИСТР» Депозитарий электронных изданий. Москва 2010.

Термодинамические свойства комбинированных пищевых систем на основе овощных пюре, крупяных хлопьев и творога. Шамкова Н.Т., Яковлева Т.В., Зайко Г.М., Боровская Л.В.Известия высших учебных заведений. Пищевая технология. 2008. № 2-3 (303-304).

Зависимость теплоемкости от температуры в системах на основе полиэтиленгликоля и жирных кислот. Шабалина С.Г., Шпербер Ф.Р., Данилин В.Н., Боровская Л.В.депонированная рукопись № 340-В2002 20.02.2002

Исcледование студней на основе каррагинана и пектина методом дифференциальной сканирующей калориметрии. Барашкина Е.В., Тамова М.Ю., Боровская Л.В., Миронова О.П.//Известия высших учебных заведений. Пищевая технология. 2003. №4

Применение PDM-технологий в управлении качеством пищевой продукции. Боровская Л.В., Молова О.Э.//В сборнике: Устойчивое развитие, экологически безопасные технологии и оборудование для переработки пищевого сельскохозяйственного сырья; импортоопережение Сборник материалов международной научно-практической конференции. 2016.

Исследование термодинамических свойств белково-полисахаридной системы методом дифференциальной сканирующей калориметрии.Бугаец Н.А., Тамова М.Ю., Боровская Л.В., Миронова О.П.Известия высших учебных заведений. Пищевая технология. 2003. № 5-6

Транспортировка и хранение скоропортящихся пищевых продуктов. Данилин В.Н., Петрашев В.А., Боровская Л.В.Известия высших учебных заведений. Пищевая технология. 1996. № 1-2 (230-231).

Источник