Под каким давлением топливо может впрыскиваться в двигатель

Под каким давлением топливо может впрыскиваться в двигатель

На чтение 13 мин. Обновлено 16 ноября, 2020

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления – обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска – осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка – выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления – состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Читайте также:  На каком расстоянии от трубопроводов с внутренним давлением до 2 мпа можно забивать шпунт

Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное – реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе – наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Источник

Управление подачей топлива дизельного двигателя

Образование топливо-воздушной смеси влияет на расход топлива, состав выхлопных газов и шумы дизельного двигателя. Система впрыска топлива оказывает влияние на смесеобразование и процесс сгорания в камере сгорания двигателя. К параметрам, влияющим на смесеобразование и процесс сгорания относятся:

  • начало подачи (перекрытие канала) и начало впрыска;
  • продолжительность впрыска и кривая (график) интенсивности подачи;
  • давление впрыска;
  • направление впрыска и количество отверстий для впрыска;
  • избыточный воздух.

Начало подачи (перекрытие канала) и начало впрыска

Термин «начало подачи» относится к действительному началу подачи насоса высокого давления. Вместе с началом подачи (FB) действительное начало впрыска (SB) также имеет большое значение для оптимальной отдачи двигателя. Так как начало подачи (перекрытие канала) может быть определено более просто, чем действительное начало впрыска для двигателя при его остановке, то установка (настройка) топливного насоса высокого давления (ТНВД) производится при начале подачи топлива. Это возможно, т.к. между началом подачи и началом впрыска (4) существует определенное соотношение. Начало впрыска определяется с помощью угла поворота коленчатого вала (5) в области верхней мертвой точки (ВМТ) поршня, при котором о ткрывается форсунка и топливо впрыскивается в камеру сгорания. Начало впрыска топлива в камеру сгорания имеет значительное влияние на начало сгорания топливо-воздушной смеси. Максимальная конечная температура сжатия возникает в ВМТ. Если сгорание начинается раньше ВМТ, то давление сгорания резко возрастает и тормозит движение поршня вверх, уменьшая, таким образом, эффективную мощность двигателя. Резкий рост давления сгорания также приводит к «жесткой» работе двигателя. Сгорание, тем не менее, должно закончиться до того, как откроется выпускной клапан. Имеет место также и понижение расхода топлива, если сгорание начинается в области ВМТ.

Если начало сгорания опережается (2), то температура в камере сгорания возрастает, что приводит также и к увеличению выбросов NOx (1). Если начало впрыска слишком запаздывает (3), то это может привести к неполному сгоранию и к выбросу не полностью сгоревших углеводородов.

Мгновенное положение поршня влияет на движение воздуха в камере сгорания, его плотность и температуру. Соответственно, скорость движения и качество смешивания топливо-воздушной смеси зависят от начала впрыска. Таким образом, начало впрыска также влияет на выбросы сажи и продуктов неполного сгорания. Такая взаимная зависимость удельного расхода топлива и выбросов углеводородов с одной стороны и выбросов черного дыма и N0 с другой стороны требует минимально возможных допусков для начала впрыска, чтобы добиться оптимальных величин (а — оптимальное начало впрыска).

Различные периоды задержки воспламенения при различных температурах требуют температурной коррекции начала впрыска. При подаче топлива, время распространения топлива зависит от длины магистрали. При высоких оборотах это имеет результатом задержку впрыска (т.е. время от начала подачи до начала впрыска). Вдобавок к этому, чем выше обороты двигателя, тем выше задержка воспламенения (т.е. время от начала впрыска до начала воспламенения). Оба этих фактора должны быть скомпенсированы, и это является причиной того, почему в систему впрыска топлива должно быть встроено устройство корректировки момента впрыска, зависящего от числа оборотов двигателя опережения и момента начала впрыска. Из соображений шумности и уменьшения выбросов, различные характеристики начала впрыска для режима полной нагрузки (2) требуются чаще, чем для режима частичной нагрузки (3). Характеристика начала впрыска показывает схематически зависимость начала впрыска (4) от температуры, нагрузки и оборотов двигателя (5). (1 — запуск холодного двигателя).

Читайте также:  Какое должно быть давление масла в двигателе мицубиси

Продолжительность впрыска и кривая интенсивности подачи (впрыска)

Термин «интенсивность подачи» описывает кривую характеристику количества впрыснутого в камеру сгорания топлива как функцию угла поворота коленчатого или кулачкового вала (соответственно углы поворота коленчатого или кулачкового вала).

Одним из главных параметров, влияющих на кривую интенсивности подачи, является продолжительность впрыска. Она измеряется в углах поворота коленчатого или кулачкового вала или в миллисекундах и является периодом, в течение которого открыта форсунка и топливо впрыскивается в камеру сгорания, На рисунке показано, как подача количества впрыскиваемого топлива начинается с помощью кулачкового вала насоса и как топливо впрыскивается из форсунки (как функция угла поворота кулачкового вала). Можно видеть, что характеристика давления и кривая интенсивности подачи сильно изменяются между элементом насоса и форсункой, и что на них влияют детали, которые определяют впрыск (кулачок, элемент насоса, нагнетательный клапан, топливопровод (магистраль подачи) и форсунка).

Рис. Продолжительность впрыска и кривая интенсивности подачи

Рис. rl — период задержки воспламенения; 1. Подъем кулачка, скорость подъема; 2. Давление в камере элемента насоса; 3. Подъем клапана; 4. Давление в топливопроводе на стороне насоса; 5. Давление в топливопроводе на стороне форсунки; 6. Подъем иглы форсунки; 7. Кривая интенсивности подачи; 8. Угол поворота кулачка, град.

Различные системы дизельных двигателей требуют различной продолжительности впрыска в каждом из случаев. Двигатели с непосредственным впрыском требуют примерно 25 — 30° поворота коленчатого вала при определенном числе оборотов, а двигатели с предкамерой — угла поворота коленчатого вала в 35 — 40°. Продолжительность впрыска при 30°- повороте коленчатого вала, соответствующем повороту на 15° кулачкового вала, означает продолжительность впрыска в 1,25 миллисекунд для числа оборотов ТНВД, равному 2000 об/мин.

Для поддержания расхода топлива и выбросов серы на низком уровне, продолжительность впрыска должна быть определена как функция рабочей точки и зависит от начала впрыска. При начале впрыска должно протекать лишь малое количество топлива, тогда как в конце требуется большое количество топлива. Форсунка затем должна закрыться как можно быстрее. Такая кривая интенсивности подачи приведет к медленному повышению давления сжатия. Сгорание, таким образом, будет «мягким». В двигателях с непосредственным впрыском шум от сгорания заметно меньшается, если малая часть топлива, впрыснутого в камеру сгорания, мелко распылена перед основным впрыском.

Рис. as — начало впрыска в градусах поворота коленчатого вала до ВМТ; 1. Расход топлива; 2. г/кВт-ч; 3. Продолжительность впрыска; 4. Сера; 5. Градусы поворота коленчатого вала; 6. Окислы азота (NOx); 7. Углеводороды (НС); 8. г/ч.

Такой метод впрыска остается очень дорогим. В двигателях с разделенной камерой сгорания (с предкамерой или вихревой камерой) используются игольчатые дросселирующие форсунки. Эти форсунки образуют одну струю топлива и определяют кривую интенсивности подачи. Форсунки управляют поперечным сечением выхода как функцией хода клапана впрыска (нагнетательного клапана).

Вторичный впрыск (или так называемое «капание») особенно нежелателен и происходит из-за быстрого повторного открывания форсунки после ее закрывания, и она впрыскивает плохо подготовленное топливо позже в процессе сгорания. Эго топливо сгорает не полностью или вообще не сгорает и выходит через выхлопные газы как несгоревшие углеводороды.

Быстрозакрывающиеся форсунки предотвращают такое «капание». «Мертвый объем» в нижней части у седла форсунки производит эффект, подобный «капанью». Пары топлива, накапливающиеся в этом объеме, выходят в камеру сгорания после окончания сгорания и также поступают в выхлопные газы, где увеличивают выбросы несгоревших углеводородов. Наименьший «мертвый объем» получается у форсунок с седлом с отверстиями.

Читайте также:  У какого животное самое высокое кровяное давление

Влияние конструкции форсунки на выбросы углеводородов

Рис. Влияние конструкции форсунки на выбросы углеводородов: а ) Форсунка без глухого отверстия; б) Форсунка с миниатюрным глухим отверстием; 1. Двигатель с удельным рабочим объемом 1,3 л на цилиндр; 2. Двигатель с удельным рабочим объемом 2,0 л на цилиндр; 3. Выбросы НС; 3. Объем отверстия для впрыска и объем глухого отверстия; 5. г/кВт-ч; 6. мм3.

Давление впрыска

Чем выше относительные скорости топлива и воздуха, чем выше плотность воздуха в камере сгорания, тем мельче распыление дизельного топлива. Высокое давление топлива приводит к высокой его скорости. Дизельные двигатели с разделенными камерами сгорания работают при высоких скоростях воздуха в вихревой камере или в дополнительной камере сгорания (предкамере) или в соединительном канале между вихревой и основной камерами сгорания. Здесь рабочее давление превышает примерно 350 бар. Для дизельных двигателей с непосредственным впрыском скорость воздуха в камере сгорания относительно низка и смешивание является нормальным.

Смешивание существенно улучшается, если топливо впрыскивается в камеру сгорания под высоким давлением. Выбросы сажи могут быть существенно снижены, особенно на низких оборотах двигателя, используя давления впрыска вплоть до 1000 бар. Повышенные давления впрыска заметно увеличивают расход топлива, т.к. помимо прочего возрастает нагрузка на двигатель для привода ТНВД.

Рис. Давление впрыска: OCs — начало впрыска после ВМТ; 1. Черный дым; 2. г/кВт-ч; 3. Расход топлива, в,; 4. Окислы азота NOx.

Направление впрыска

Дизельные двигатели с предкамерой или с вихревой камерой работают только с одной струей (факелом) топлива, направление которого подбирается для соответствующей камеры сгорания. Отклонение приводят к худшему использованию воздуха и, таким образом, к увеличению выбросов черного дыма и несгоревших углеводородов.

Дизельные двигатели с непосредственным впрыском обычно работают с 4 — 6 распылительными отверстиями в форсунке, направление впрыска которых очень точно подбирается для соответствующей камеры сгорания. Отклонения в пределах 2° от оптимального направления приводят к заметному увеличению выбросов черного дыма и расхода топлива.

Избыточный воздух и «поведение» выхлопных газов

Дизельные двигатели обычно работают без дросселирования поступающего воздуха. Если имеется много избыточного воздуха, то топливо сгорает «чище» в камере сгорания. Компоненты выхлопных газов, такие как окись углерода, СО и сажа образуются в очень низких концентрациях. Избыток воздуха в камере сгорания уменьшается с увеличением количества впрыскиваемого топлива. Если принимать во внимание низкий вес двигателя и его стоимость, то для конкретного двигателя существует определенный объем для получения максимально возможной мощности. Двигатель поэтому должен работать с небольшим избытком воздуха при высоких нагрузках. Если избыток воздуха мал, то выбросы должны быть ограничены, т.е. количество топлива должно быть точно дозировано для данного количества воздуха и в зависимости от оборотов двигателя. Низкое давление воздуха (например, на большой высоте) требует адаптации количества впрыснутого топлива к уменьшившемуся количеству воздуха.

Турбонаддув

В случае двигателей с турбонаддувом количество впрыскиваемого топлива ограничивается в зависимости от давления во впускном коллекторе двигателя.

Рециркуляция выхлопных газов (EGR)

У двигателей с EGR выпускаемый воздух может смешиваться с поступающим воздухом при работе в режиме частичной нагрузки для уменьшения выбросов NOx. Эта мера уменьшает концентрацию кислорода в выхлопе и к тому же выхлопные газы обладают большей теплоемкостью, чем воздух. Оба этих фактора уменьшают температуру сгорания (и вместе с ней образование NOx). Увеличение скорости EGR (2) уменьшает расход свежего воздуха для двигателя и, таким образом, количество избыточного воздуха (3 — коэффициент избытка воздуха). Следовательно, выбросы (1 — концентрация выбросов) углеводородов и сажи (4) в выхлопных газах возрастают, если поступающий воздух содержит избыточную долю выхлопных газов.

Попытки существенно снизить выбросы NOx с помощью рециркуляции выхлопных газов также требуют точной регулировки количества впрыскиваемого топлива (5) для требуемого количества воздуха при работе в области частичных нагрузок. Другими словами, количество рециркулирующих выхлопных газов должно быть ограничено так, чтобы для сгорания впрыснутого топлива в камере сгорания имелось достаточное количество кислорода.

Рис. Рециркуляция выхлопных газов

Источник

Источник