По какой формуле рассчитывается давление и сила давления
Содержание статьи
Сила, Давление — Формулы по физике
По
рыхлому снегу человек идёт с большим трудом, глубоко проваливаясь при
каждом шаге. Но, надев лыжи, он может идти, почти не проваливаясь в
него. Почему? На лыжах или без лыж человек действует на снег с одной и
той же силой, равной своему весу. Однако действие этой силы в обоих
случаях различно, потому что различна площадь поверхности, на которую
давит человек, с лыжами и без лыж. Площадь поверхности лыж почти в 20
раз больше площади подошвы. Поэтому, стоя на лыжах, человек действует на
каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз
меньшей, чем стоя на снегу без лыж.
Ученик,
прикалывая кнопками газету к доске, действует на каждую кнопку с
одинаковой силой. Однако кнопка, имеющая более острый конец, легче
входит в дерево.
Значит,
результат действия силы зависит не только от её модуля, направления и
точки приложения, но и от площади той поверхности, к которой она
приложена (перпендикулярно которой она действует).
Этот вывод подтверждают физические опыты.
Опыт.Результат действия данной силы зависит от того, какая сила действует на единицу площади поверхности.
По
углам небольшой доски надо вбить гвозди. Сначала гвозди, вбитые в
доску, установим на песке остриями вверх и положим на доску гирю. В этом
случае шляпки гвоздей лишь незначительно вдавливаются в песок. Затем
доску перевернем и поставим гвозди на острие. В этом случае площадь
опоры меньше, и под действием той же силы гвозди значительно углубляются
в песок.
Опыт. Вторая иллюстрация.
От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия этой силы.
В
рассмотренных примерах силы действовали перпендикулярно поверхности
тела. Вес человека был перпендикулярен поверхности снега; сила,
действовавшая на кнопку, перпендикулярна поверхности доски.
Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением.
Чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности:
давление = сила / площадь.
Обозначим величины, входящие в это выражение: давление — p, сила, действующая на поверхность, — F и площадь поверхности — S.
Тогда получим формулу:
p = F/S
Понятно, что бóльшая по значению сила, действующую на ту же площадь, будет производить большее давление.
За единицу давления принимается такое давление, которое производит сила в 1 Н, действующая на поверхность площадью 1 м2 перпендикулярно этой поверхности.
Единица давления — ньютон на квадратный метр ( 1 Н / м2 ). В честь французского ученого Блеза Паскаля она называется паскалем (Па). Таким образом,
1 Па = 1 Н / м2 .
Используется также другие единицы давления: гектопаскаль (гПа) и килопаскаль (кПа).
1 кПа = 1000 Па;
1 гПа = 100 Па;
1 Па = 0,001 кПа;
1 Па = 0,01 гПа.
Пример.
Рассчитать давление, производимое на пол мальчиком, масса которого 45
кг, а площадь подошв его ботинок, соприкасающихся с полом, равна 300 см2.
Запишем условие задачи и решим её.
Дано: m = 45 кг, S = 300 см2; p = ?
В единицах СИ: S = 0,03 м2
Решение:
p = F/S,
F = P,
P = g·m,
P = 9,8 Н · 45 кг ≈ 450 Н,
p = 450/0,03 Н / м2 = 15000 Па = 15 кПа
‘Ответ’: p = 15000 Па = 15 кПа
Способы уменьшения и увеличения давления.
Тяжелый
гусеничный трактор производит на почву давление равное 40 — 50 кПа, т.
е. всего в 2 — 3 раза больше, чем давление мальчика массой 45 кг. Это
объясняется тем, что вес трактора распределяется на бóльшую площадь за
счёт гусеничной передачи. А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору.
В
зависимости от того, нужно ли получить малое или большое давление,
площадь опоры увеличивается или уменьшается. Например, для того, чтобы
грунт мог выдержать давление возводимого здания, увеличивают площадь
нижней части фундамента.
Шины
грузовых автомобилей и шасси самолетов делают значительно шире, чем
легковых. Особенно широкими делают шины у автомобилей, предназначенных
для передвижения в пустынях.
Тяжелые
машины, как трактор, танк или болотоход, имея большую опорную площадь
гусениц, проходят по болотистой местности, по которой не пройдет
человек.
С
другой стороны, при малой площади поверхности можно небольшой силой
произвести большое давление. Например, вдавливая кнопку в доску, мы
действуем на нее с силой около 50 Н. Так как площадь острия кнопки
примерно 1 мм2, то давление, производимое ею, равно:
p = 50 Н/ 0, 000 001 м2 = 50 000 000 Па = 50 000 кПа.
Для
сравнения, это давление в 1000 раз больше давления, производимого
гусеничным трактором на почву. Можно найти еще много таких примеров.
Лезвие
режущих и острие колющих инструментов (ножей, ножниц, резцов, пил, игл и
др.) специально остро оттачивается. Заточенный край острого лезвия
имеет маленькую площадь, поэтому при помощи даже малой силы создается
большое давление, и таким инструментом легко работать.
Режущие
и колющие приспособления встречаются и в живой природе: это зубы,
когти, клювы, шипы и др. — все они из твердого материала, гладкие и
очень острые.
Давление
Известно, что молекулы газа беспорядочно движутся.
Опыт. Здесь мы узнаем, что газ давит на стенки сосуда по всем направлениям одинаково.
Мы
уже знаем, что газы, в отличие от твердых тел и жидкостей, заполняют
весь сосуд, в котором находятся. Например, стальной баллон для хранения
газов, камера автомобильной шины или волейбольный мяч. При этом газ
оказывает давление на стенки, дно и крышку баллона, камеры или любого
другого тела, в котором он находится. Давление газа обусловлено иными
причинами, чем давление твердого тела на опору.
Известно,
что молекулы газа беспорядочно движутся. При своем движении они
сталкиваются друг с другом, а также со стенками сосуда, в котором
находится газ. Молекул в газе много, поэтому и число их ударов очень
велико. Например, число ударов молекул воздуха, находящегося в комнате, о
поверхность площадью 1 см2 за
1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной
молекулы мала, но действие всех молекул на стенки сосуда значительно, —
оно и создает давление газа.
Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.
Рассмотрим
следующий опыт. Под колокол воздушного насоса поместим резиновый шарик.
Он содержит небольшое количество воздуха и имеет неправильную форму.
Затем насосом откачиваем воздух из-под колокола. Оболочка шарика, вокруг
которой воздух становится все более разреженным, постепенно раздувается
и принимает форму правильного шара.
Как объяснить этот опыт?
Для хранения и перевозки сжатого газа используются специальные прочные стальные баллоны.
В
нашем опыте движущиеся молекулы газа непрерывно ударяют о стенки шарика
внутри и снаружи. При откачивании воздуха число молекул в колоколе
вокруг оболочки шарика уменьшается. Но внутри шарика их число не
изменяется. Поэтому число ударов молекул о внешние стенки оболочки
становится меньше, чем число ударов о внутренние стенки. Шарик
раздувается до тех пор, пока сила упругости его резиновой оболочки не
станет равной силе давления газа. Оболочка шарика принимает форму шара.
Это показывает, что газ давит на ее стенки по всем направлениям одинаково.
Иначе говоря, число ударов молекул, приходящихся на каждый квадратный
сантиметр площади поверхности, по всем направлениям одинаково.
Одинаковое давление по всем направлениям характерно для газа и является
следствием беспорядочного движения огромного числа молекул.
Попытаемся
уменьшить объем газа, но так, чтобы масса его осталась неизменной. Это
значит, что в каждом кубическом сантиметре газа молекул станет больше,
плотность газа увеличится. Тогда число ударов молекул о стенки
увеличится, т. е. возрастет давление газа. Это можно подтвердить опытом.
На рисунке а изображена
стеклянная трубка, один конец которой закрыт тонкой резиновой пленкой. В
трубку вставлен поршень. При вдвигании поршня объем воздуха в трубке
уменьшается, т. е. газ сжимается. Резиновая пленка при этом выгибается
наружу, указывая на то, что давление воздуха в трубке увеличилось.
Наоборот,
при увеличении объема этой же массы газа, число молекул в каждом
кубическом сантиметре уменьшается. От этого уменьшится число ударов о
стенки сосуда — давление газа станет меньше. Действительно, при
вытягивании поршня из трубки объем воздуха увеличивается, пленка
прогибается внутрь сосуда. Это указывает на уменьшение давления воздуха в
трубке. Такие же явления наблюдались бы, если бы вместо воздуха в
трубке находился бы любой другой газ.
Итак, при
уменьшении объема газа его давление увеличивается, а при увеличении
объема давление уменьшается при условии, что масса и температура газа
остаются неизменными.
А
как изменится давление газа, если нагреть его при постоянном объеме?
Известно, что скорость движения молекул газа при нагревании
увеличивается. Двигаясь быстрее, молекулы будут ударять о стенки сосуда
чаще. Кроме того, каждый удар молекулы о стенку будет сильнее.
Вследствие этого, стенки сосуда будут испытывать большее давление.
Следовательно, давление газа в закрытом сосуде тем больше, чем выше температура газа, при условии, что масса газа и объем не изменяются.
Из этих опытов можно сделать общий вывод, что давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда.
Для
хранения и перевозки газов их сильно сжимают. При этом давление их
возрастает, газы необходимо заключать в специальные, очень прочные
баллоны. В таких баллонах, например, содержат сжатый воздух в подводных
лодках, кислород, используемый при сварке металлов. Конечно же, мы
должны навсегда запомнить, что газовые баллоны нельзя нагревать, тем
более, когда они заполнены газом. Потому что, как мы уже понимаем, может
произойти взрыв с очень неприятными последствиями.
Закон Паскаля.
Давление передается в каждую точку жидкости или газа.
Давление поршня передается в каждую точку жидкости, заполняющей шар.
Теперь газ.
В
отличие от твердых тел отдельные слои и мелкие частицы жидкости и газа
могут свободно перемещаться относительно друг друга по всем
направлениям. Достаточно, например, слегка подуть на поверхность воды в
стакане, чтобы вызвать движение воды. На реке или озере при малейшем
ветерке появляется рябь.
Подвижностью частиц газа и жидкости объясняется, что давление, производимое на них, передается не только в направлении действия силы, а в каждую точку. Рассмотрим это явление подробнее.
На рисунке, а изображен
сосуд, в котором содержится газ (или жидкость). Частицы равномерно
распределены по всему сосуду. Сосуд закрыт поршнем, который может
перемещаться вверх и вниз.
Прилагая
некоторую силу, заставим поршень немного переместиться внутрь и сжать
газ (жидкость), находящийся непосредственно под ним. Тогда частицы
(молекулы) расположатся в этом месте более плотно, чем прежде(рис, б).
Благодаря подвижности частицы газа будут перемещаться по всем
направлениям. Вследствие этого их расположение опять станет равномерным,
но более плотным, чем раньше (рис, в). Поэтому давление газа всюду
возрастет. Значит, добавочное давление передается всем частицам газа или
жидкости. Так, если давление на газ (жидкость) около самого поршня
увеличится на 1 Па, то во всех точках внутри газа
или жидкости давление станет больше прежнего на столько же. На 1 Па
увеличится давление и на стенки сосуда, и на дно, и на поршень.
Давление, производимое на жидкость или газ, передается на любую точку одинаково во всех направлениях.
Это утверждение называется законом Паскаля.
На основе закона Паскаля легко объяснить следующие опыты.
На
рисунке изображен полый шар, имеющий в различных местах небольшие
отверстия. К шару присоединена трубка, в которую вставлен поршень. Если
набрать воды в шар и вдвинуть в трубку поршень, то вода польется из всех
отверстий шара. В этом опыте поршень давит на поверхность воды в
трубке. Частицы воды, находящиеся под поршнем, уплотняясь, передают его
давление другим слоям, лежащим глубже. Таким образом, давление поршня
передается в каждую точку жидкости, заполняющей шар. В результате часть
воды выталкивается из шара в виде одинаковых струек, вытекающих из всех
отверстий.
Если
шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий
шара начнут выходить одинаковые струйки дыма. Это подтверждает, что и газы передают производимое на них давление во все стороны одинаково.
Давление в жидкости и газе.
Под действием веса жидкости резиновое дно в трубке прогнется.
На
жидкости, как и на все тела на Земле, действует сила тяжести. Поэтому,
каждый слой жидкости, налитой в сосуд, своим весом создает давление,
которое по закону Паскаля передается по всем направлениям.
Следовательно, внутри жидкости существует давление. В этом можно
убедиться на опыте.
В
стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой
пленкой, нальем воду. Под действием веса жидкости дно трубки прогнется.
Опыт
показывает, что, чем выше столб воды над резиновой пленкой, тем больше
она прогибается. Но всякий раз после того, как резиновое дно прогнулось,
вода в трубке приходит в равновесие (останавливается), так как, кроме
силы тяжести, на воду действует сила упругости растянутой резиновой
пленки.
По мере опускания трубки | резиновая пленка постепенно выпрямляется. | Силы, действующие на резиновую пленку, | одинаковы с обеих сторон. |
Иллюстрация.
Дно отходит от цилиндра вследствие давления на него силы тяжести.
Опустим
трубку с резиновым дном, в которую налита вода, в другой, более широкий
сосуд с водой. Мы увидим, что по мере опускания трубки резиновая пленка
постепенно выпрямляется. Полное выпрямление пленки показывает, что
силы, действующие на нее сверху и снизу, равны. Наступает полное
выпрямление пленки тогда, когда уровни воды в трубке и сосуде совпадают.
Такой
же опыт можно провести с трубкой, в которой резиновая пленка закрывает
боковое отверстие, как это показано на рисунке, а. Погрузим эту трубку с
водой в другой сосуд с водой, как это изображено на рисунке, б.
Мы заметим, что пленка снова выпрямится, как только уровни воды в
трубке и сосуде сравняются. Это означает, что силы, действующие на
резиновую пленку, одинаковы со всех сторон.
Возьмем
сосуд, дно которого может отпадать. Опустим его в банку с водой. Дно
при этом окажется плотно прижатым к краю сосуда и не отпадет. Его
прижимает сила давления воды, направленная снизу вверх.
Будем
осторожно наливать воду в сосуд и следить за его дном. Как только
уровень воды в сосуде совпадет с уровнем воды в банке, оно отпадет от
сосуда.
В
момент отрыва на дно давит сверху вниз столб жидкости в сосуде, а снизу
вверх на дно передается давление такого же по высоте столба жидкости,
но находящейся в банке. Оба эти давления одинаковы, дно же отходит от
цилиндра вследствие действия на него собственной силы тяжести.
Выше были описаны опыты с водой, но если взять вместо воды любую другую жидкость, результаты опыта будут те же.
Итак, опыты показывают, что внутри
жидкости существует давление, и на одном и том же уровне оно одинаково
по всем направлениям. С глубиной давление увеличивается.
Газы
в этом отношении не отличаются от жидкостей, ведь они тоже имеют вес.
Но надо помнить, что плотность газа в сотни раз меньше плотности
жидкости. Вес газа, находящегося в сосуде, мал, и его «весовое» давление
во многих случаях можно не учитывать.
Источник
просто и понятно о том, как определяется давление
Давление – очень важная физическая величина, играющая огромную роль, как в окружающей природе, так и жизни человека. Внешне незаметное человеческому глазу давление может очень хорошо ощущаться каждым из нас. Особенно хорошо это усвоили люди в возрасте, часто страдающие от повышенного давления (или наоборот от пониженного). Но в нашей статье мы больше поговорим именно о давлении в физике, о том, как оно измеряется и рассчитывается, какие есть формулы для расчетов давления разных субстанций: воздуха, жидкости или твердого тела.
Определение давления в физике
Под давлением в физике понимается термодинамическая величина, выраженная соотношением перпендикулярной силы давления на площадь поверхности, на которую она воздействует. При этом согласно закону Паскаля если система находится в состоянии равновесия, то давление на нее будет одинаковым для всех точек системы.
В физике, как впрочем и химии, давление обозначают большой буквой Р, идущей от латинского слова «pressura» – давление. (В английском языке давление так и осталось почти без изменения – pressure).
Общая формула давления
Из классического определения того, что такое давление можно вывести общую формулу для его расчета. Выглядеть она будет таким образом:
P = F/S
Где F – это сила давления, а S – площадь поверхности на которую она действует. То есть иными словами формула нахождения давления – это сила, воздействующая на определенную поверхность, разделенная на площадь этой самой поверхности.
Как видно из формулы, при расчете давления всегда действует следующий принцип: чем меньше пространство, на которое влияет сила, тем большее количество давящей силы на него приходится и наоборот.
Это можно проиллюстрировать простым жизненным примером: хлеб легче всего порезать острым ножом, потому что у острого ножа заточенное лезвие, то есть площадь поверхности S из формулы у него минимальна, а значит, давление ножа на хлеб будет максимально равно приложенной силе F того кто держит нож. А вот тупым ножом порезать хлеб уже сложнее, так как у его лезвия большая площадь поверхности S, и давление ножа на хлеб будет меньшим, и значит, чтобы отрезать себе кусок хлеба нужно приложить большее количество силы F.
Общая формула давления, по сути, отлично описывает формулу давления твердого тела.
Единицы давления
Согласно стандартам Международной метрической системы давление измеряется в паскалях. Один паскаль из классической формулы равен одному Ньютону (Как мы знаем, Ньютон у нас единица измерения силы) разделенному на один квадратный метр.
Но увы на практике паскаль оказывается очень маленькой единицей и использовать его для измерения давления не всегда удобно, поэтому часто для измерения давления применяют другие единицы:
- Бары – один бар равен 105 паскалей
- Миллиметры водяного столпа
- Метры водяного столпа
- Технические и физические атмосферы
Формула гидростатического давления
Как мы знаем, разные агрегатные состояния вещества, имеют разные физические свойства. Жидкости своими свойствами отличаются от твердых тел, а газы в свою очередь отличаются от них всех. Поэтому вполне логично, что способы определения давления для жидкостей, твердых тел и газов также будут разными. Так, например, формула давления воды (или гидростатического давления) будет иметь следующий вид:
P = p*g*h
Где маленькая p – плотность вещества, g – ускорение свободного падения, h – высота.
В частности эта формула объясняет, почему при погружении водолазов (или батискафа или подводной лодки) на глубину все больше возрастает давление окружающей воды. Также из этой формулы понятно, почему на предмет, погруженный в какой-нибудь кисель, будет воздействовать большее давление, чем на предмет, погруженный просто в воду, так как плотность киселя (p) выше, чем у воды, а чем выше плотность жидкости, тем выше ее гидростатическое давление.
Приведенная нами формула гидростатического давления справедлива не только для жидкостей, но и для газов. Поэтому поднимаясь высоко в горы (где воздух более разрежен, а значит меньшее давление), как и спускаясь в подводные глубины, человек, водолаз или альпинист должен пройти специальную адаптацию, привыкнуть к тому, что на него будет воздействовать другое давление.
Резкая смена давления может привести к кессоной болезни (в случае с водолазами) или к «горной» болезни (в случае с альпинистами). И «кесонка» и «горняшка», как их сленгово называют водолазы и альпинисты, вызвана резкой сменной давления окружающей среды. То есть, если не подготовленный человек начнет вдруг подниматься на Эверест, то он быстро словит «горняшку», а если этот же человек начнет опускаться на дно Мариинской впадины, то гарантировано получит «кесонку». В первом случае причиной будет не адаптация организма к пониженному давлению, а во втором – к повышенному.
Американские водолазы в декомпрессионой камере, призванной подготовить их к глубоководным погружениям и адаптировать организм к высокому давлению океанских глубин.
Парциальное давление и его формула
Хотя формула гидростатического давления применима для газов, но давления для них удобнее вычислять по другой формуле, формуле парциального давления.
Дело в том, что в природе редко встречаются абсолютно чистые вещества, причем это касается как жидкостей, так и газов. Обычно на практике в окружающем мире преобладают различные смеси, и логично, что каждый из компонентов такой смеси может оказывать разное давление, такое разное давление и называют парциальным. Определить парциальное давление просто – оно равно суме давлений каждого компонента рассматриваемой смеси. Отсюда формула парциального давления будет иметь следующий вид:
P = P1+P2+P3
Где P1, P2 и P3 – давления каждого из компонентов газовой смеси, так званный «идеальный газ».
К примеру, чтобы определить давления воздуха обычной формулы гидростатического давления проделанной только с кислородом недостаточно, так как воздух в реальности представляет собой смесь разных газов, где помимо основного компонента кислорода, которым мы все дышим, есть и другие: азот, аргон и т. д.
Такие расчеты нужно проделывать при помощи формулы парциального давления.
Формула давления идеального газа
Также стоит заметить, что давление идеального газа, то есть каждого отдельного из компонентов газовой смеси удобно посчитать по формуле молекулярно-кинетической теории.
P = n*k*T
Где n – концентрация молекул газа, T – абсолютная температура газа, k – постоянная Больцмана (указывает на взаимосвязь между кинетической энергией частицы газа и ее абсолютной температурой), она равна 1,38*10-23 Дж/К.
Приборы для измерения давления
Разумеется, человечество изобрело многие приборы, позволяющие быстро и удобно измерять уровень давления. Для измерения давления окружающей среды, оно же атмосферное давление используют такой прибор как манометр или барометр.
Так выглядит классический барометр для измерения атмосферного давления.
Чтобы узнать артериальное давление у человека, часто служащее причиной недомоганий используется прибор известный большинству под названием неинвазивный тонометр. Таких приборов существует множество разновидностей.
Также биологи в своих исследованиях занимаются расчетами осмотического давления – это давление внутри и снаружи клетки. А метеорологи, в частности по перепадам давления в окружающей среде предсказывают нам погоду.
Рекомендованная литература и полезные ссылки
- Кузнецов В. Н. Давление. Большая Российская Энциклопедия. Дата обращения 27 августа 2016.
- E.R. Cohen et al, «Quantities, Units and Symbols in Physical Chemistry», IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge (2008). — p. 14.
Расчет давления жидкости на дно и стенки сосуда, видео
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.
Источник