От каких факторов зависит давление насыщенного пара

От чего зависит давление насыщенного пара

13 сентября 2014

Автор
КакПросто!

Давление насыщенного пара является одной их характеристик различных жидкостей и приводится в качестве справочного материала в специальной литературе. Знание этой величины позволяет путём изменения внешнего давления побудить жидкость закипеть или, наоборот, образовать конденсат из газообразного продукта.

Поскольку насыщенный пар представляет собой один из компонентов термодинамически равновесной системы гомогенного по составу, но различного по фазовым фракциям вещества, то понимание влияния отдельных физических факторов на величину создаваемого им давления позволяют использовать эти знания в практической деятельности, например, при определении скорости выгорания тех или иных жидкостей в случае возгорания и пр.

Давление насыщенного пара становится тем больше, чем больше увеличивается температура. При этом изменение величин не является прямо пропорциональным, а происходит значительно быстрее. Это связано с тем, что с увеличением температуры ускоряется движение молекул относительно друг друга и им легче преодолеть силы взаимного притяжения и перейти в иную фазу, т.е. количество молекул в жидком состоянии уменьшается, а в газообразном возрастает до тех пор, пока вся жидкость не превратится в пар. Это увеличивающееся давление и обусловливает поднимание крышки в кастрюле или чайнике, когда начинает закипать вода.

На величину давления насыщенного пара оказывает влияние и количество перешедших в газообразное состояние молекул, так как их число определяет массу образующегося пара в закрытом сосуде. Эта величина не является постоянной, так как при разности температур дна сосуда и закрывающей его крышки постоянно происходят два взаимно противоположных процесса – парообразование и конденсация.

Поскольку для каждого вещества при определённой температуре существуют известные показатели перехода определённого количества молекул из одной фазы состояния вещества в другую, то изменить величину давления насыщенного пара можно путём изменения объёма сосуда. Так, один и тот же объём воды, например 0,5 л, создаст разное по величине давление в пятилитровой канистре и литровом чайнике.

Определяющим фактором для определения справочной величины давления насыщенного пара при неизменном объёме и постепенном повышении температуры является молекулярная структура самой жидкости, подвергаемой нагреванию. Так, показатели для ацетона, спирта и обычной воды будут существенно отличаться друг от друга.

Чтобы увидеть процесс кипения жидкости необходимо не только довести давление насыщенного пара до определённых пределов, но и соотнести эту величину с внешним атмосферным давлением, так как процесс кипения возможен только в том случае, когда давление снаружи выше давления внутри сосуда.

Источники:

  • Бинарные жидкие системы

Источник

Давление насыщенного пара

Насыщенный пар

Это пар, находящийся в термодинамическом равновесии с жидкой (или твёрдой) фазой одного и того же вещества.

Одним из параметров, характеризующим насыщенный пар, является его давление.

Давление насыщенного пара зависит от температуры и не зависит от объема.

Разберемся подробнее, почему так происходит.

Почему давление насыщенного пара не зависит от объема?

Рассмотрим этот вопрос на примере дистиллированной воды.

Возьмем цилиндр с поршнем, в полости которого находится дистиллят в термодинамическом равновесии с паром. Начинаем двигать поршень вниз, объем цилиндра начинает уменьшаться, происходит сжатие насыщенного пара, при этом мы поддерживаем постоянную температуру.

Система начнёт выходить из равновесия, плотность пара будет увеличиваться, и из газообразной фазы в жидкую будет переходить молекул больше, чем из жидкой в газообразную.

Другими словами, мы будем наблюдать процесс превращения насыщенного пара обратно в жидкость, этот процесс называется конденсация.

Если мы начнем поднимать поршень, объем полости увеличится, концентрация водяных паров над жидкостью начнет уменьшаться, вследствие чего, вода в сосуде начнет испаряться до тех пор, пока давление и концентрация насыщенного пара над жидкостью не придет в исходное состояние, то есть пока не наступит термодинамическое равновесие.

Из выше сказанного мы делаем вывод, что концентрация молекул насыщенного пара над жидкостью при постоянной температуре не зависит от его объема.

Уравнение, описывающее давление насыщенного пара

P=nkT,P=nkT,P=nkT,

где PPP – давление пара (Па), nnn – концентрация молекул пара (м-3), kkk – постоянная Больцмана (равна 1,380649 Дж/К), ТТТ – температура (К).

Из приведенной формулы мы видим, что давление насыщенного пара прямо пропорционально концентрации молекул и температуре паров над жидкостью (или твердым веществом) и, следовательно, не зависит от занимаемого им объема.

Как давление насыщенного пара зависит от температуры?

Из формулы, приведенной выше, мы наблюдаем, что давление насыщенного пара прямо пропорционально температуре термодинамической системы.
Несмотря на это, экспериментальная зависимость отличается от описанной уравнением, и давление пара увеличивается с большей скоростью с повышением температуры, нежели по линейному закону. Почему так происходит?

Всё дело в том, что во время увеличения подведенной температуры растёт и скорость испарения жидкости (или сублимации твёрдого вещества), вследствие этих факторов, увеличивается и концентрация испарённых (или сублимированных) молекул в газообразном состоянии над жидкой (или твёрдой) фазой. Поэтому и давление насыщенных паров изменяется быстрее. Плотность пара будет возрастать до тех пор, пока термодинамическое равновесие для данной температуры вновь не восстановится.

Читайте также:  Какое давление в кубе при ректификации

На участке 1-2 мы как раз видим влияние двух факторов – увеличение температуры и концентрации паров. В точке 2 вся жидкость испаряется (или твердое вещество сублимируется) и пар становится ненасыщенным, тогда давление начинает расти по линейному закону, что видно на участке 2-3.

Значения давления насыщенного пара для воды и других веществ при различных температурах получены эмпирическим методом. Эти данные можно найти в справочных материалах.

Тест по теме «Давление насыщенного пара»

Источник

Насыщенный пар

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

От каких факторов зависит давление насыщенного пара

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

(1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

Читайте также:  Сонливость и болит голова какое давление

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

От каких факторов зависит давление насыщенного пара

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Источник

!!!! для школьных учителей !!!!
Как теперь смотреь флэш-файлы!

Давление насыщенного пара

Подробности

Просмотров: 638

«Физика — 10 класс»

Как вы думаете, что будет происходить с насыщенным паром, если уменьшить занимаемый им объём: например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной?

При сжатии пара равновесие начнёт нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнёт переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех пор, пока вновь не установится динамическое равновесие и плотность пара, а значит, и концентрация его молекул не примут прежних своих значений. Следовательно,

концентрация молекул насыщенного пара при постоянной температуре не зависит от его объёма.

Так как давление пропорционально концентрации молекул (р = nkT), то из этого определения следует, что давление насыщенного пара не зависит от занимаемого им объёма.

Давление рн. п пара, при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

При сжатии насыщенного пара всё большая часть его переходит в жидкое состояние. Жидкость данной массы занимает меньший объём, чем пар той же массы. В результате объём пара при неизменной его плотности уменьшается.

Газовые законы для насыщенного пара несправедливы (при любом объёме при постоянной температуре давление насыщенного пара одинаково). В то же время состояние насыщенного пара достаточно точно описывается уравнением Менделеева-Клапейрона.

Ненасыщенный пар

>Если пар постепенно сжимают при постоянной температуре, а превращение его в жидкость не происходит, то такой пар называют ненасыщенным.

От каких факторов зависит давление насыщенного пара

При уменьшении объёма (рис. 11.1) давление ненасыщенного пара увеличивается (участок 1—2) подобно тому, как изменяется давление при уменьшении объёма идеального газа. При определённом объёме пар становится насыщенным, и при дальнейшем его сжатии происходит превращение его в жидкость (участок 2—3). В этом случае над жидкостью уже будет находиться насыщенный пар.

Как только весь пар превратится в жидкость, дальнейшее уменьшение объёма вызовет резкое увеличение давления (жидкость малосжимаема).

Однако пар превращается в жидкость не при любой температуре. Если температура выше некоторого значения, то, как бы мы ни сжимали газ, он никогда не превратится в жидкость.

>Максимальная температура, при которой пар ещё может превратиться в жидкость, называется критической температурой.

Каждому веществу соответствует своя критическая температура, у гелия Tкр = 4 К, у азота Tкр = 126 К.

Состояние вещества при температуре выше критической называется газом; при температуре ниже критической, когда у пара есть возможность превратиться в жидкость, — паром.

Свойства насыщенного и ненасыщенного пара различны.

Зависимость давления насыщенного пара от температуры.

Состояние насыщенного пара, как показывает опыт, приближённо описывается уравнением состояния идеального газа (10.4), а его давление определяется формулой

рн. п = nkT.         (11.1)

С ростом температуры давление растёт.

Так как давление насыщенного пара не зависит от объёма, то, следова тельно, оно зависит только от температуры.

От каких факторов зависит давление насыщенного пара

Однако зависимость давления рн. п от температуры Т, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объёме. С увеличением температуры давление реального насыщенного пара растёт быстрее, чем давление идеального газа (рис. 11.2, участок кривой АВ). Это становится очевидным, если провести изохоры идеального газа через точки А и В (штриховые прямые). Почему это происходит?

Читайте также:  Какие травы для стабилизации давления

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (11.1) давление насыщенного пара растёт не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара.

В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объёма при постоянной температуре) изменяется масса пара.

Почему составляются таблицы зависимости давления насыщенного пара от температуры и нет таблиц зависимости давления газа от температуры?

Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.

Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объёме будет возрастать прямо пропорционально абсолютной температуре (см. рис. 11.2, участок кривой ВС).

Кипение.

По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объёму жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность.

Кипение — это процесс парообразования, происходящий по всему объёму жидкости при температуре кипения.

При каких условиях начинается кипение?

На что расходуется при кипении подводимое к жидкости тепло с точки зрения молекулярно-кинетической теории?

Температура кипения жидкости остаётся постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение её в пар.

В жидкости всегда присутствуют растворённые газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создаёт характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на её поверхность. Пузырёк пара может расти, когда давление насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.

Обратим внимание на то, что испарение жидкости происходит и при температурах, меньших температуры кипения, но только с поверхности жидкости, при кипении же образование пара происходит по всему объёму жидкости.

Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается и становится чуть больше давления в жидкости.

Чем больше внешнее давление, тем выше температура кипения.

Так, в паровом котле при давлении, достигающем 1,6 • 106 Па, вода не кипит и при температуре 200 °С. В медицинских учреждениях в герметически закрытых сосудах — автоклавах (рис. 11.3) кипение воды также происходит при повышенном давлении. Поэтому температура кипения жидкости значительно выше 100 °С. Автоклавы применяют, например, для стерилизации хирургических инструментов, ускорения приготовления пищи (скороварка), консервации пищи, проведения химических реакций.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения.

От каких факторов зависит давление насыщенного пара

Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре. При подъёме в горы атмосферное давление уменьшается, поэтому уменьшается температура кипения. На высоте 7134 м (пик Ленина на Памире) давление приближённо равно 4 • 104 Па (300 мм рт. ст.). Вода кипит там примерно при 70 °С. Сварить мясо в этих условиях невозможно.

У каждой жидкости своя температура кипения, которая зависит от свойств жидкости. При одной и той же температуре давление насыщенного пара разных жидкостей различно.

Например, при температуре 100 °С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути — всего лишь 117 Па (0,88 мм рт. ст.). Так как кипение происходит при той же температуре, при которой давление насыщенного пара равно внешнему давлению, то вода при 100 °С закипает, а ртуть нет. Кипит ртуть при температуре 357 °С при нормальном давлении.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Насыщенный пар —
Давление насыщенного пара —
Влажность воздуха —
Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» —
Кристаллические тела —
Аморфные тела —
Внутренняя энергия —
Работа в термодинамике —
Примеры решения задач по теме «Внутренняя энергия. Работа» —
Количество теплоты. Уравнение теплового баланса —
Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» —
Первый закон термодинамики —
Применение первого закона термодинамики к различным процессам —
Примеры решения задач по теме: «Первый закон термодинамики» —
Второй закон термодинамики —
Статистический характер второго закона термодинамики —
Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей —
Примеры решения задач по теме: «КПД тепловых двигателей»

Источник