Объясните на примере этана какие продукты образуются
Содержание статьи
Этан: способы получения и свойства
Этан C2H6 — это предельный углеводород, содержащий два атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.
Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп -СН2- друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.
Самый первый представитель гомологического ряда алканов — метан CH4. , или Н-СH2-H.
Продолжить гомологический ряд можно, последовательно добавляя группу -СН2- в углеводородную цепь алкана.
Название алкана | Формула алкана |
Метан | CH4 |
Этан | C2H6 |
Пропан | C3H8 |
Бутан | C4h20 |
Пентан | C5h22 |
Гексан | C6h24 |
Гептан | C7h26 |
Октан | C8h28 |
Нонан | C9H20 |
Декан | C10H22 |
Общая формула гомологического ряда алканов CnH2n+2.
Первые четыре члена гомологического ряда алканов — газы, C5-C17 — жидкости, начиная с C18 — твердые вещества.
В молекулах алканов встречаются химические связи C-H и С-С.
Связь C-H ковалентная слабополярная, связь С-С — ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов — sp3:
При образовании связи С-С происходит перекрывание sp3-гибридных орбиталей атомов углерода:
При образовании связи С-H происходит перекрывание sp3-гибридной орбитали атома углерода и s-орбитали атома водорода:
Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.
Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109о 28′ друг к другу:
Это соответствует тетраэдрическому строению молекулы.
Например, в молекуле этана C2H6 атомы водорода располагаются в пространстве в вершинах двух тетраэдров, центрами которых являются атомы углерода
Для этана не характерно наличие изомеров — ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.
Этан — предельный углеводород, поэтому он не может вступать в реакции присоединения.
Для метана характерны реакции:
- разложения,
- замещения,
- окисления.
Разрыв слабо-полярных связей С — Н протекает только по гомолитическому механизму с образованием свободных радикалов.
Поэтому для этана характерны радикальные реакции.
Этан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.
1. Реакции замещения
В молекулах алканов связи С-Н более доступны для атаки другими частицами, чем менее прочные связи С-С.
1.1. Галогенирование
Этан реагирует с хлором и бромом на свету или при нагревании.
При хлорировании этана сначала образуется хлорэтан:
CH3-CH3 + Cl2 = CH3-CH2Cl + HCl
Хлорэтан может взаимодействовать с хлором и дальше с образованием дихлорэтана, трихлорэтана, тетрахлорметана и т.д.
1.2. Нитрование этана
Этан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в этане замещается на нитрогруппу NO2.
Например. При нитровании этана образуется преимущественно нитроэтан:
CH3-CH3 + HNO3 = CH3-CH2NO2 + H2O
2. Дегидрирование этана
Дегидрирование — это реакция отщепления атомов водорода.
В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.
При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С-Н у соседних атомов углерода и образуются двойные и тройные связи.
Например, при дегидрировании этана образуются этилен или ацетилен:
3. Окисление этана
Этан — слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).
3.1. Полное окисление — горение
Этан горит с образованием углекислого газа и воды. Реакция горения этана сопровождается выделением большого количества теплоты.
C2H4 + 3O2 → 2CO2 + 2H2O + Q
Уравнение сгорания алканов в общем виде:
CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q
При горении этана в недостатке кислорода может образоваться угарный газ СО или сажа С.
1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
Это один из лабораторных способов получения этана из хлорметана или бромметана. При этом происходит удвоение углеродного скелета.
Например, хлорметан реагирует с натрием с образованием этана:
2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.
R-COONa + NaOH → R-H + Na2CO3
Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.
При взаимодействии пропионата натрия с гидроксидом натрия при сплавлении образуется этан и карбонат натрия:
CH3-CH2-COONa + NaOH → CH3-CH2-H + Na2CO3
3. Гидрирование алкенов и алкинов
Этан можно получить из этилена или ацетилена:
При гидрировании этилена образуется этан:
При полном гидрировании ацетилена также образуется этан:
4. Синтез Фишера-Тропша
Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:
nCO + (3n+1)H2 = CnH2n+2 + nH2O
Это промышленный процесс получения алканов.
Синтезом Фишера-Тропша можно получить этан:
2CO + 5H2 = C2H6 + 2H2O
5. Получение этана в промышленности
В промышленности этан получают из нефти, каменного угля, природного и попутного газа. При переработке нефти используют ректификацию, крекинг и другие способы.
Источник