Какой расход будет при потери давления
Содержание статьи
Как определить расход воды по диаметру трубы и давлению?
Зависимость водного давления от диаметра трубопровода
Между давлением водного потока и трубным диаметром наблюдается прямая зависимость, описываемая законом Бернулли.
Согласно нему при возрастании давления воды скорость течения снижается, и наоборот.
При пропускании постоянного водного потока через трубы с различным сечением обнаруживается, что в узких частях давление меньше, чем в широких.
При переходе воды из широкой части в узкую, давление снижается, и наоборот.
В трубах с различным сечением за одинаковый промежуток времени протекает равный объем воды. Поэтому на широких участках она течет медленнее, чем по узким.
Таблица соотношения
Водорасход напрямую зависит от пропускной способности. Это такая величина, которая показывает максимальный объем, проходящий через систему за определенный временной промежуток и при определенном давлении.
Для труб с разным диаметром такая величина разнится. Подробная информация указана в таблице ниже:
Когда нужно проводить вычисления?
Выполнять вычисления необходимо при выборе труб для водопровода. Диаметр должен быть подходящим, чтобы избежать чрезмерного водорасхода и обеспечить нормальный напор.
Такая необходимость появляется при проектировании дома и подведении к нему коммуникаций. При выборе трубы с оптимальным сечением для водопровода нужно обязательно выполнять ряд расчетов. Необходимо узнать максимальные объемы необходимой воды в доме за минуту.
Для этого нужно посмотреть паспортные данные стиральной и посудомоечной машин, узнать их расход. К полученным данным приплюсовать расход воды на кранах (через один прибор протекает примерно 5-6 литров за минуту времени).
Исходя из полученных результатов, нужно приобрести трубу с таким сечением, чтобы этого было достаточно для одновременной работы всех устройств и кранов.
Пошаговая инструкция, как рассчитать водорасход
Произвести подсчеты можно при помощи таблиц. Но полученные результаты будут неточными. Поэтому лучше проводить расчеты на месте, учитывая скорость потока, материал трубопроводных систем и прочие характеристики трубопровода.
Проще всего рассчитать объем расходуемой H2O по следующей формуле:
q=π*d2 /4*V, где:
- q — расход воды (л/с);
- V — скорость течения (м/с);
- d — диаметр (см).
Использовать эту формулу можно и для поиска других неизвестных. Если известен диаметр и расход воды, можно определить скорость потока. А если известны V и q, можно узнать диаметр.
В большинстве стояков напор водного потока равняется 1,5-2,5 атмосфер. А скорость потока обычно составляет 0,8-1,5 м/с. Может быть установлен дополнительный нагнетатель, который меняет параметры внутри системы. Все данные о нем должны быть указаны в техпаспорте.
Минимальное давление в системе должно составлять 1,5 атмосфер — этого достаточно для работы стиральной машины и посудомойки. Чем оно выше, тем быстрее вода движется по трубам, поэтому водорасход повышается.
Для получения более точных результатов применяется формула Дарси-Вейсбаха, которая учитывает возможные изменения напора воды, что приводит к повышению или снижению давления.
ΔP=λ*L/D*V2 /2q *ϸ, где:
- ΔP — потеря давления на сопротивлении движения потока;
- λ — показатель потерь на трение по всей длине;
- D — сечение трубы;
- V — скорость течения;
- L — длина трубопровода;
- g — константа = 9,8 м/с2;
- ϸ — вязкость потока.
Такую формулу обычно используют для выполнения сложных расчетов гидродинамики. В остальных случаях применяются упрощенные варианты.
Частный случай расчета водорасхода — через отверстие крана. Применяется формула:
q=S*V, где:
- Q — водорасход;
- S — площадь окружности (отверстия крана), определяется по формуле S= π*r2;
- V — скорость течения, если она неизвестна, определить ее можно, исходя из формулы V=2g*h, где g — константа, h — высота водного столба над отверстием крана.
Правила расчета
При выполнении вычислений необходимо учитывать следующие правила:
-
Следить за правильностью величин. Если одно значение исчисляется в м/с, то другое должно измеряться в л/с (не в кг/час). Иначе произведенные расчеты будут неверными.
- Применять правильные значения констант.
- Учитывать данные нагнетателя системы, если он используется. Вся информация о его влиянии на параметры системы указывается в техническом паспорте.
- Промежуточные вычисления рекомендуется проводить с точными величинами, а конечный результат можно округлить (лучше в большую сторону).
Чтобы облегчить расчеты, можно воспользоваться калькуляторами в режиме онлайн, в которые достаточно только ввести все известные данные.
Заключение
Объем расходуемой воды напрямую зависит от трубного диаметра и давления внутри системы. Чем больше давление, тем быстрее будет протекать вода, что приведет к большому водорасходу. Чем меньше диаметр трубы, тем выше сопротивление воды и меньше скорость ее течения.
Если выбрать неподходящий d, водный напор в системе может быть снижен. Поэтому при установке водных коммуникаций нужно обязательно проводить расчеты. Иначе в будущем могут появиться проблемы с водорасходом.
А какова Ваша оценка данной статье?
Источник
Как потери напора влияют на расход?
Как потери напора влияют на расход?
Рассмотрим две задачи. В первой задаче рассмотрим напорнорасходный график насоса. Во второй задаче рассмотрим давление центрального водоснабжения.
Задача 1. Водоснабжение от насоса
Найти расход!
Трубопровод полипропилен 20 мм с внутренним диаметром 13.2 мм. Температура воды 20 градусов.
Напорнорасходный график насоса
Решение
Воспользуемся программой. И заполним таблицу потерь напора для различных расходов.
Подробнее о программе
Для отвода задается КМС равной 1 единице. Что такое КМС?
Таблица потерь напора в зависимости от расхода
Напронорасходный график трубопровода с отводом
Пересечение двух графиков
На пересечение двух графиков находится точка. Перпендикуляры данной точки к оси расхода является искомым значением.
Ответ: Расход равен 54 л/мин.
С помощью программы можно найти этот расход другим способом. На вкладке расчет разветвления цепи ввести эту цепь далее ввести напорнорасходный график насоса и программа автоматически найдет искомый расход.
Когда речь идет о центральном водоснабжении
Для центрального водоснабжения следует принять следующие законы:
1. Необходимо принять за константу минимальное давление центрального водоснабжения 1 Bar
2. Максимальное давление 6 Bar. В редких случаях повышают до 7 Bar.
3. Неограниченный расход. Расход ограничивается трубопроводом от центральной трубы.
Задача 2. Центральное водоснабжение
Расход, который дает центральное водоснабжение несравнимо велико по сравнению с тем расходом, который мы собираемся отобрать.
Дано:
Давление центрального водоснабжения: 4 Bar
Шаровый кран 3/4
Один резкий равнопроходной отвод
Труба полипропилен 20мм с внутренним диаметром 13.2 мм.
В конце трубы кран регулировочный, Kvs крана 3 м3/час. Что такое Kvs?
Решение
Поскольку диаметр трубы очень велик по сравнению с отводящей трубой, то примем давление за константу 4 Bar.
Поэтому напорнорасходный график центрального водоснабжения
Воспользуемся программой
И введем в нее значения
Труба: Полипропилен
Внутренний диаметр: 13,2мм
Резкий отвод: 1 КМС
Соединение с трубой, кран 3/4 и соединение ПП 20 примем за 0,5 КМС
Регулировочный кран: 3 Kvs
Заполним таблицу на каждый расход
Напорнорасходный график
По напорнорасходному графику уже видно, что расход будет около 47 л/мин.
В другой задаче сделаем расчет трубопровода, когда труба поднимается вверх.
Например,
Подписывайтесь на рассылку, просто укажите имя и Ваш для уведомления о новых статьях.
Серия видеоуроков по частному дому
Часть 1. Где бурить скважину?
Часть 2. Обустройство скважины на воду
Часть 3. Прокладка трубопровода от скважины до дома
Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения
Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
Расчет самовсасывающего насоса
Расчет диаметров от центрального водоснабжения
Насосная станция водоснабжения
Как выбрать насос для скважины?
Настройка реле давления
Реле давления электрическая схема
Принцип работы гидроаккумулятора
Уклон канализации на 1 метр СНИП
Подключение полотенцесушителя
Схемы отопления
Гидравлический расчет двухтрубной системы отопления
Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
Гидравлический расчет однотрубной системы отопления
Гидравлический расчет лучевой разводки системы отопления
Схема с тепловым насосом и твердотопливным котлом — логика работы
Трехходовой клапан от valtec + термоголовка с выносным датчиком
Почему плохо греет радиатор отопления в многоквартирном доме
Как подключить бойлер к котлу? Варианты и схемы подключения
Рециркуляция ГВС. Принцип работы и расчет
Вы не правильно делаете расчет гидрострелки и коллекторов
Ручной гидравлический расчет отопления
Расчет теплого водяного пола и смесительных узлов
Трехходовой клапан с сервоприводом для ГВС
Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
Конструктор водоснабжения и отопления
Уравнение Бернулли
Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны
Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления
Секция радиатора
Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
Новые насосы работают по-другому…
Расчет инфильтрации
Расчет температуры в неотапливаемом помещении
Расчет пола по грунту
Расчет теплоаккумулятора
Расчет теплоаккумулятора для твердотопливного котла
Расчет теплоаккумулятора для накопления тепловой энергии
Куда подключить расширительный бак в системе отопления?
Сопротивление котла
Петля Тихельмана диаметр труб
Как подобрать диаметр трубы для отопления
Теплоотдача трубы
Гравитационное отопление из полипропиленовой трубы
Почему не любят однотрубное отопление? Как её полюбить?
Умный подбор диаметров в системе отопления
Балансировка радиаторов отопления — пошаговое руководство
Топ 5 проблем в проектировании систем отопления
Регуляторы тепла
Комнатный термостат — принцип работы
Смесительный узел
Что такое смесительный узел?
Виды смесительных узлов для отопления
Характеристики и параметры систем
Местные гидравлические сопротивления. Что такое КМС?
Пропускная способность Kvs. Что это такое?
Кипение воды под давлением — что будет?
Что такое гистерезис в температурах и давлениях?
Что такое инфильтрация?
Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!
Гидравлические смыслы, понятия и расчет цепей систем отопления
Коэффициент затекания в однотрубной системе отопления
Гидравлический парадокс в системе отопления. Загадка № 4
Видео
Отопление
Автоматическое управление температурой
Простая подпитка системы отопления
Теплотехника. Ограждающие конструкции.
Теплый водяной пол
Насосно смесительный узел Combimix
Почему нужно выбрать напольное отопление?
Водяной теплый пол VALTEC. Видеосеминар
Труба для теплого пола — что выбрать?
Теплый водяной пол — теория, достоинства и недостатки
Укладка теплого водяного пола — теория и правила
Теплые полы в деревянном доме. Сухой теплый пол.
Пирог теплого водяного пола — теория и расчет
Новость сантехникам и инженерам
Сантехники Вы все еще занимаетесь халтурой?
Первые итоги разработки новой программы с реалистичной трехмерной графикой
Программа теплового расчета. Второй итог разработки
Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции
Итоги разработки новой программы по гидравлическому расчету
Первично вторичные кольца системы отопления
Один насос на радиаторы и теплый пол
Расчет теплопотерь дома — ориентация стены?
Нормативные документы
Нормативные требования при проектировании котельных
Сокращенные обозначения
Термины и определения
Цоколь, подвал, этаж
Котельные
Документальное водоснабжение
Источники водоснабжения
Физические свойства природной воды
Химический состав природной воды
Бактериальное загрязнение воды
Требования, предъявляемые к качеству воды
Сборник вопросов
Можно ли разместить газовую котельную в подвале жилого дома?
Можно ли пристроить котельную к жилому дому?
Можно ли разместить газовую котельную на крыше жилого дома?
Как подразделяются котельные по месту их размещения?
Личные опыты гидравлики и теплотехники
Вступление и знакомство. Часть 1
Гидравлическое сопротивление термостатического клапана
Гидравлическое сопротивление колбы — фильтра
Видеокурс
Скачать курс Инженерно-Технические расчеты бесплатно!
Программы для расчетов
Technotronic8 — Программа по гидравлическим и тепловым расчетам
Auto-Snab 3D — Гидравлический расчет в трехмерном пространстве
Полезные материалы
Полезная литература
Гидростатика и гидродинамика
Задачи по гидравлическому расчету
Потеря напора по прямому участку трубы
Как потери напора влияют на расход?
Разное
Водоснабжение частного дома своими руками
Автономное водоснабжение
Схема автономного водоснабжения
Схема автоматического водоснабжения
Схема водоснабжения частного дома
Политика конфиденциальности
Источник
Онлайн-калькулятор потерь напора в зависимости от расхода жидкости и сечения трубопровода
Эта версия статьи создана: 13.01.2021. Дата первой публикации: 28.08.2019
Зачем нужен этот калькулятор?
Калькулятор умеет рассчитывать потери напора в метрах в зависимости от длины и диаметра вашего трубопровода, а также объемного расхода жидкости. Зная потери напора, вы сможете более точно подобрать нужный насос под вашу задачу.
Наш калькулятор использует формулу расчета одного немецкого института гидродинамики. Из всех протестированных нами формул эта в наибольшей степени соотносится с нашим собственным опытом.
Чтобы воспользоваться калькулятором, введите исходные данные, потом нажмите кнопку «Рассчитать».
Ниже этой кнопки будут показаны результаты расчета.
Введите исходные данные
Внутренний диаметр трубопровода
мм
Длина трубопровода
м
Расход жидкости
Перекачиваемая жидкость
Кинематическая вязкость
м²/с
Введите значение вязкости вручную
Материал внутренней стенки трубопровода
Шероховатость внутренней поверхности трубы
мм
Введите данные вручную
Ускорение свободного падения в точке измерения
м/с²
Введите корректное ускорение, оно варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах.
Результаты
Площадь сечения трубопровода: 0 м²
Относительная шероховатость трубопровода: 0 мм
Скорость течения жидкости: 0 м/с
Число Рейнольдса: 0
Режим течения: 0
Коэффициент гидравлического трения: 0
Потери напора по длине: 0 м.в.ст
Подробнее о заполнении полей калькулятора
Поясним чуть подробнее как заполнить исходные данные.
- Внутренний диаметр трубопровода
Измеряется в миллиметрах. Лучше измерять диаметр труб непосредственно штангенциркулем, а не ориентироваться на справочные данные. Также обратите внимание на то, что диаметр требуется именно внутренний. В каталогах труб часто указывают номинальный диаметр труб, который чуть больше, чем внутренний.
- Длина трубопровода
Измеряется в метрах. Длина трубопровода — это сумма длин всех прямых участков трубы, а не расстояние между начальной и конечной точкой. К примеру, если у вас труба идет 10 метров по земле, а затем поднимается на 3 метра вверх, и идет 2 метра в обратном направлении, то в калькулятор нужно занести число 15. Это важно учитывать на предприятиях, где трубы часто обходят препятствия и имеют технологические изгибы.
- Расход жидкости
В этом пункте вы самостоятельно можете выбрать единицы измерения: литры в минуту или кубометры в час. Расход жидкости — это количество жидкости, которое протекает через трубу за определенное время. Например, если 60 литровая бочка наполняется водой за 1 час, значит расход воды составляет 60 литров в час или 1 литр в минуту.
- Перекачиваемая жидкость
Для удобства в калькулятор уже занесены данные по кинематической вязкости некоторых жидкостей при температуре 20 °C. Если ваша жидкость присутствует в перечне, то просто выберите ее из выпадающего списка. Данные кинематической вязкости в поле ниже заполнятся автоматически. Если вашей жидкости в списке нет, то выберите пункт «Другая жидкость», после чего у вас появится возможность редактировать поле «Кинематическая вязкость» вручную. Кроме того, если температура перекачиваемой жидкости меньше 15 °С или больше 25 °С, то значение кинематической вязкости тоже лучше ввести вручную.
- Кинематическая вязкость
Измеряется в квадратных метрах в секунду. В большинстве случаев это поле заполняется автоматически. Однако если у вас есть данные по вязкости, лучше укажите это значение вручную. Для этого нужно выбрать в поле выше пункт «Другая жидкость», после чего откроется возможность ручного редактирования кинематической вязкости. Данные о кинематической вязкости можно взять из специализированных таблиц или измерить непосредственно при помощи вискозиметра. Обратите внимание, что вязкость сильно зависит от температуры жидкости — измеряйте ее при той же температуре, при которой она будет находиться в трубах. В данном калькуляторе используется система СИ, поэтому вводите данные именно в квадратных метрах в секунду. В таблицах данные часто указывают в сантистоксах: 1 сСт = 0.000001 м²/с. Не запутайтесь в количестве нулей!
- Материал внутренней поверхности трубопровода
Калькулятор содержит справочник материалов, из которых надо выбрать материал внутренней стенки трубопровода. Это нужно для определения шероховатости внутренней поверхности трубы. Если вы знаете шероховатость, то лучше указать ее вручную, выбрав пункт списка «Указать шероховатость вручную». После чего вам станет доступно для редактирования поле «Шероховатость внутренней поверхности».
- Шероховатость внутренней поверхности
Измеряется в условных миллиметрах. Эти данные можно взять из специализированных справочников.
Результаты расчёта
После того, как вы заполните данные, нажмите кнопку «Рассчитать». Калькулятор отобразит следующие показатели:
- Площадь поперечного сечения трубопровода
Рассчитывается в квадратных метрах. Этот показатель полезен для дальнейших расчетов.
- Относительная шероховатость трубопровода
Измеряется в условных миллиметрах. Этот показатель может отличаться от номинальной шероховатости, но может и совпадать с ней. Он пригодится для ручных расчетов.
- Скорость течения жидкости
Измеряется в метрах в секунду. Это средняя скорость каждой частицы жидкости вдоль оси трубопровода. Скорость у стенок трубопровода может отличаться.
- Число Рейнольдса
Указывает на точность проводимых измерений и на вид течения жидкости. Чем меньше это число, тем точнее измерения. Но погрешность нарастает медленно, поэтому вплоть до сотен тысяч расчеты можно считать точными.
- Режим течения
Важный показатель. Выделяют три режима: ламинарный — расчеты в этом режиме достаточно точные, а потери на трение не велики. Всегда стремитесь к тому, чтобы ваша жидкость текла в ламинарном режиме. Турбулентный режим — в этом случае точность расчетов еще на достаточном уровне, но в турбулентном режиме значительная часть энергии потока жидкости будет тратиться внутреннее трение, турбулентность и нагрев. Эксплуатировать трубы в таком режиме можно, но КПД системы будет на несколько процентов ниже, чем в ламинарном режиме. Переходный же режим характеризуется тем, что в перекачиваемой жидкости периодически возникают и угасают турбулентные колебания. Гарантировать точность расчетов в таком режиме нельзя. Если ваша система уже работает в переходном режиме, то выбирайте насос с большим запасом по мощности. Если же вы только проектируете систему, то избегайте переходного режима — измените диаметр труб либо на больший, либо на меньший.
- Коэффициент гидравлического трения
Безразмерный показатель, используемый при расчете гидравлических систем.
- Потери напора по длине
Это ключевой показатель, для расчета которого калькулятор и создавался. Потери измеряются в метрах водяного столба. Показатель напора отвечает на вопрос: насколько метров жидкость может подняться вверх. Он нужен для правильного подбора насоса.
Обратите внимание:
1. Любой калькулятор потерь напора (в том числе и этот) дает погрешности при вычислениях. Поэтому сделанный расчет должен быть подкреплен практической проверкой. Если вы нашли очевидную ошибку или неточность в расчетах нашего калькулятора, пожалуйста, сообщите нам на электронную почту.
2. Калькулятор рассчитывает потери давления жидкости без учета изменения высоты труб. Подробнее об этом будет указано в конце статьи.
Пример расчета потери напора для подбора насоса
Допустим, мы хотим подобрать насос для двухэтажного дома. Нам нужно, чтобы на втором этаже могла работать стиральная машина, для которой нужно обеспечить давление в 6 м.в.ст. Источником воды будет колодец или скважина, глубиной 10 метров. Сам насос будет располагаться на уровне воды. Начертим эскиз водопровода и укажем все известные нам размеры: расстояние от скважины до дома 15 метров, расстояние от земли до места установки стиральной машины 5 метров.
Сложив все эти величины, получаем длину трубопровода 30 метров. Вводим это значение в калькулятор. Заполняем остальные значения: в нашем случае внутренний диаметр труб будет 15 мм. В качестве значения расхода воды укажем максимальное потребление для стиральной машины — 30 литров в минуту. В качестве жидкости у нас будет выступать вода, а в качестве труб — полипропилен. Нажимаем кнопку рассчитать, и получаем потери напора в 22 метра водяного столба.
Но это еще не окончательный ответ. Из рисунка выше видно, что в нашем случае насос должен поднять воду на высоту 15 метров (10 метров высота скважины и 5 метров — высота дома). Значит к 22 м.в.ст. нужно добавить еще 15 метров высоты. Общие потери напора, с учетом подъема воды из скважины до высоты второго этажа составят 22+15=37 метров водяного столба. Однако, если взять насос с максимальным напором в 37 м.в.ст. он сможет лишь поднять воду до уровня стиральной машины. Впускной клапан стиральной машины, по условиям нашей задачи, требует как минимум 6 м.в.ст. избыточного давления. Их тоже нужно прибавить к результату: 37+6=43 метра водяного столба.
Вот теперь мы можем подобрать насос для данного водопровода: нам подойдут любые модели, способные обеспечить напор более 43 метров водяного столба.
Но, обратите внимание на получившуюся цифру: при длине линии в 30 метров у нас на одно только трение теряется аж 22 метра напора. Если трубы еще не проложены, то стоит выбрать диаметр труб побольше. Посмотрим, что будет, если мы всего на треть увеличим диаметр трубы. Диаметр у нас был 15, а теперь возьмем трубы диаметром 20 мм. Остальные данные оставим теми же.
Нажимаем кнопку «рассчитать» и получаем потери давления — чуть более 6 метров водяного столба. Значит мы сократили потери напора с 22 до 6 метров. Прекрасный результат! Не забудем прибавить к этой цифре 15 метров подъема по высоте и 6 метров давления, которое мы хотим видеть на выходе из трубопровода: 6+15+6=27 метров водяного столба. Получается, что увеличив диаметр труб всего на треть, мы можем существенно снизить требования к насосу. В нашем случае, для сечения труб ⌀ 20 мм нам подойдет любой насос с рабочим давлением более 27 метров водяного столба.
Расчет потери напора сделан. Как теперь подобрать насос?
Когда известны расчетные параметры трубопроводной сети, можно подобрать насос онлайн, пользуясь нашим каталогом. Для подбора насоса онлайн вам необходимо будет указать желаемую производительность насоса и его напор (давление). Подробнее об онлайн-подборе насосов на нашем сайте написано здесь.
Как вариант, вы всегда можете позвонить нам или написать на электронную почту, чтобы переложить подбор насоса на наших приветливых и заботливых менеджеров по продажам.
Источник