Какой продукт преимущественно образуется при взаимодействии

Алкены: химические свойства

Полный курс химии вы можете найти на моем сайте CHEMEGE.RU. Чтобы получать актуальные материалы и новости ЕГЭ по химии, вступайте в мою группу ВКонтакте или на Facebook. Если вы хотите подготовиться к ЕГЭ по химии на высокие баллы, приглашаю на онлайн-курс «40 шагов к 100 баллам на ЕГЭ по химии«.

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Характеристики хим. связей

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Еπ = Е(С=С) — Е(С-С) = 620 — 348 = 272 кДж/моль

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).  

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами  красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.

Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Хлорирование пропена

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.  

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.

Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

Гидрохлорирование пропилена

1.4. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

Гидратация пропилена

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn   (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

Полимеризация этилена

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида):

Каталитическое окисление этилена

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида:

Окисление этилена над оксидом серебра

2.2. Мягкое окисление

Мягкое окисление алкенов протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Окисление алкенов водным раствором перманганата калия без нагревания

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

«Мягкое» окисление этилена водным раствором перманганата калия

2.3. Жесткое окисление алкенов

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Читайте также:  Какие продукты выпускает майкрософт

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Продукты окисления алкенов

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

Окисление бутилена-2 перманганатом калия в серной кислоте

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

Окисление изобутилена подкисленным раствором перманганата калия

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, при окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Окисление бутена-2 водным раствором перманганата калия при нагревании

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Окисление изобутилена перманганатом в водной среде при нагревании

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов 

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

CnH2n + 3n/2O2 → nCO2 + nH2O + Q

Например, уравнение сгорания пропилена:

2C3H6 + 9O2 → 6CO2 + 6H2O

3. Замещение в боковой цепи 

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

При взаимодействии алкенов с хлором или бромом при нагревании до 500оС или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1.

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

Например, при изомеризации бутена-1 может образоваться бутен-2 или 2-метилпропен

CH2=CH-CH2-CH3  →  CH3-CH=CH-CH3

Изомеризация бутилена

Источник

Тест по теме «Правило Марковникова» | Тест по химии по теме:

ПРАВИЛО МАРКОВНИКОВА

  1. При взаимодействии пропена с бромом при обычных условиях преимущественно образуется:
  1. 1-бромпропан
  2. 2-бромпропан
  3. 1,1-дибромпропан
  4. 1,2-дибромпропан

2.При взаимодействии пропена с хлором при 500℃ преимущественно образуется:

1) 1,2-дихлорпропан

2) 3-хлорпропан

3) 3-хлорпропен

4) 1,1-дихлорпропан

3. При взаимодействии пропена с бромоводородом преимущественно образуется:

1) 1-бромпропан

2) 2-бромпропан

  3) 1,1-дибромпропан

4)1,2-дибромпропан

4. При гидратации бутена-1 преимущественно образуется:

1) бутанол-1

2) бутанол-2

3) бутаналь

4) бутанон

5. При гидратации бутена-2 преимущественно образуется:

1) бутанол-1

2) бутанол-2

3) бутаналь

4) бутановая кислота

6. При взаимодействии бромоводорода с 2-бромпропеном преимущественно образуется:  

1) 1,1-дибромпропан

2) 1,2-дибромпропан

  3) 2,2-дибромпропан

4)1,3 -дибромпропан

7. При взаимодействии 1 моль пропина с 1 моль хлороводорода преимущественно образуется:

1) 2-хлорпропан

2) 2-хлорпропен

3) 1-хлорпропан

4) 1-хлорпропен

8. Один и тот же продукт образуется при гидратации каждого из двух веществ:

1) бутена-1 и бутена-2

2) бутена-1 и бутина-1

3) бутина-1 и бутена-2

4) бутена-1 и пропина

9. При взаимодействии акриловой кислоты с бромоводородом преимущественно образуется:

1)1-бромпропановая кислота

2) 2-бромпропановая кислота

3) 3-бромпропановая кислота

4) α-бромпропионовая кислота

10. Взаимодействие бутена-1 с бромоводородом в присутствии пероксида водорода приводит к  преимущественному образованию:

1) 1-бромбутана

2) 2-бромбутана

3) 1-бромбутена-1

4) 2-бромбутена-2

11. По правилу Марковникова происходит взаимодействие:

1) пропена и бромоводорода:

2) бутена-1 и воды

3) бутена-1 и брома

4) бутена-2 и водорода

5) бутена-1 и хлороводорода

6) этилена и кислорода

12. Для взаимодействия пропена и бромоводорода  справедливы утверждения:

1) в ходе реакции образуется 1,2-дибромпропан

2) реакция протекает по правилу Зайцева

3) реакция протекает по правилу Марковникова

4) в ходе реакции образуется 2-бромпропан

5) реакция относится к реакциям замещения

6) реакция идет по иному механизму

13. Для взаимодействия бутена-1 и хлороводорода справедливы утверждения:

1) в ходе реакции образуется 1,2-дихлорбутан

2) реакция протекает по правилу Марковникова

Читайте также:  В каких продуктах содержатся витамины аес

3) реакция является эндотермической

4) в ходе реакции образуется 2-хлорбутан

5) реакция относится к реакциям замещения

6) реакция идет по ионному механизму

14. Правило Марковникова не используют для объяснения хода реакции между:

1) бутеном-1 и бромоводородом

2) пропеном и водородом

3) пропеном и водой

4) бутеном-2 и бромоводородом

5) бутеном-1 и бромом

6) бутеном-1 и водой

15.Бромирование метана:

1) осуществляется по правилу Марковникова

2) относится к радикальным реакциям

3) начинается с процесса разрыва связи в молекуле брома

4) протекает по схеме:  CH4 + Br2 →CH2Br2+H2

5) протекает не так энергично, как реакция хлорирования

6) относится к реакциям присоединения

16. Радикал этил C2H5- :

1) образует заряд  -1

2) образуется при присоединении HCl к этилену

3) имеет нечетное число электронов

4) содержит атомы углерода в состоянии sp3-гибридизации

5) образуется при присоединении Cl2 к этену

6) электронейтрален

17. Карбокатион CH3-CH+-CH3:

1) образуется при хлорировании пропана

2) образуется при присоединении НВr к молекуле прпена

3) более устойчив, чем кабокатион CH3-CH2-CH2+

4) содержит атомы углерода только в sp3-гибридном состоянии

5) содержит центральный атом углерода в состоянии sp2-гибридизации

6) имеет линейное строение

18. Карбокатион CH3-CH2-CH2+:

1) образуется при бромировании пропана

2) образуется как основной промежуточный продукт при присоединении HBr к молекуле пропена

3) менее устойчив, чем карбокатион CH3-CH+-CH3

4) содержит атомы углерода только в sp3-гибридном состоянии

5) содержит атомы углерода в состоянии sp3- и sp2-гибридизации

6) содержит четное число электронов

19. При присоединении бромоводорода к пропену :

1) преимущественно образуется 2-бромпропавн

2) образуется 1-бромпропан и 2-бромпропан в равных соотношениях

3) происходит промежуточное образование катиона CH3-CH+-CH3

4) происходит промежуточное  образование радикала CH3-CH2-CH2-

5) правило Марковникова не соблюдается

6) разрывается π-связь в молекуле пропена

20. При присоединении воды к пропену :

1) преимущественно образуется пропанол-1

2) образуется пропанол-1 и пропанол-2 в равных соотношениях

3) разрывается π-связь в молекуле пропена

4) происходит промежуточное образование катиона CH3-CH+-CH3

5) правило Марковникова соблюдается

6) происходит промежуточное  образование радикала CH3-CH2-CH2-

ОТВЕТЫ:

1

2

3

4

5

6

7

8

9

10

4

3

2

2

2

3

2

1

3

1

11

12

13

14

15

16

17

18

19

20

125

346

246

245

235

346

235

356

136

345

Источник

Непредельные углеводороды

Список литературы

  1. Настольная книга учителя. Химия 9 класс. О.С. Габриелян, И.Г. Остроумов
  2. Настольная книга учителя. Химия 10 класс. О.С. Габриелян, И.Г. Остроумов
  3. Теория химического строения. Углеводороды. Рабочая тетрадь. А. Журин, Л. Левина.
  4. Химия внутри нас. Введение в бионеорганическую и биоорганическую химию. А.С. Егоров, Н.М. Иванченко, К.П. Шацкая.
  5. Химия. Пособие для школьников старших классов и поступающих в вузы. О.С. Габриелян, И.Г. Остроумов
  6. Репетитор по химии для поступающих в вузы под редакцией А.С. Егорова

Непредельные углеводороды

Познакомить учащихся с гомологическим рядом, химическим и электронным строением алкенов.

Развивать полученные ранее первоначальные теоретические представления об изомерии (в том числе и геометрической) и умения давать названия соединениям по номенклатуре ИЮПАК.

Развивать общие представления о типах химических реакций и механизмах их протекания на химических свойствах этиленовых углеводородов.

Рассмотреть промышленные и лабораторные способы получения алкенов.

Дать представление о реакциях полимеризации.

Воспитывать чувство патриотизма, познакомив с биографией и работами знаменитых химиков, работавших в Казанском университете – А.М.Бутлеровым, Марковниковым, А.М.Зайцевым и другими.

Дать понятие о диеновых углеводородах и их классификации.

Познакомить учащихся с номенклатурой и изомерией диенов и способами их получения.

Рассмотреть химические свойства диенов на примере реакций присоединения и полимеризации.

Познакомить учащихся с синтетическими и натуральными каучуками, их применением.

Познакомить старшеклассников с терпенами.

Познакомить учащихся с гомологическим рядом, изомерией и номенклатурой алкинов, с электронным и пространственным строением ацетилена.

Рассмотреть способы получения и применение ацетилена.

Алкены

  1. Назовите по систематической номенклатуре: СН2=СН-С(СН3)2СН3
    а) 3,3 –диметилбутен-2,
    б) 2-диметилбутен -3,
    в) 2,2- диметилбутен -3,
    г) 3,3- диметилбутен-1
  2. Бромэтан может быть превращен в этилен:
    а) взаимодействием с натрием
    б) взаимодействием со спиртовым раствором щелочи
    в) нагреванием с серной кислотой
    г) взаимодействием с водородом
  3. Реакция присоединения воды называется
    а) гидрирование
    б) дегидратация
    в) гидратация
    г) дегидрирования
  4. Какие вещества, названия которых приведены ниже, являются между собой гомологами?
    а) этен
    б) 2-метилпропен
    в)1,2- дихлорпропен
    г) 1-хлорпропен
  5. Укажите названия алкенов, для которых возможна геометрическая изомерия:
    а) 1,1-дихлорэтен
    б) 1,2-дихлорэтен
    в) винилхлорид
    г) бутен -2
  6. Укажите значение относительной молекулярной массы для алкена с 6 атомами углерода в молекуле:
    а) 86
    б) 84
    в) 82
    г) 80
  7. Укажите типы реакций, в которые может вступать пропен:
    а) полимеризации
    б) гидратации
    в) гидрирования
    г) окисления
  8. В отличие от пропана пропен реагирует
    а) бромом
    б) бромной водой
    в) водой
    г) водородом
Читайте также:  Сахарный диабет какие продукты не употреблять

Алкадиены

  1. Укажите число — связей в молекуле 1,3- бутадиена:
    а) 8
    б) 9
    в) 7
    г) 5
  2. Молярная масса алкадиена равна 82 г/моль. Сколько атомов водорода содержится в молекуле алкадиена?
    а) 10
    б) 12
    в) 14
    г) 8
  3. В молекуле алкадиена 6 атомов углерода. Укажите значение относительной молекулярной массы алкадиена:
    а) 86
    б) 84
    в) 82
    г) 80
  4. Какой продукт преимущественно образуется при взаимодействии 1 моль 1,3- бутадиена с 1 моль брома при комнатной температуре
    а) 1,4 –дибромбутен-2
    б) 1,2 –дибромбутен-1
    в) 3,4 –дибромбутен-1
    г) 1,2,3,4 – тетрабромбутан
  5. Укажите схемы реакций, в которых продуктом может быть 1,3 –бутадиен
    а) СН3-СН(СН3) – СН2 –СН3 —- (дегидрирование)
    б) СН3 –СН2 –СН2 СН3 —( кат. t)
    в) 2 СН3 – СН2Cl + 2Na —- ( t)
    г) 2С2 Н5ОН —— (кат,t )
  6. С какими веществами реагирует 1,3 –бутадиен?
    а) бром
    б) водород
    в) кислород
    г) хлороводород
  7. При полном гидрировании бутадиена -1,3 образуется:
    а) бутен
    б) бутан
    в) изопрен
    г) бутен-2
  8. Реакцией Лебедева называется реакция получения:
    а) 1.3- бутадиена из этилена
    б) 1,3 –бутадиена из винилхлорида
    в) 1,3 –бутадиена из бутана
    г) 1,3 –бутадиена из этанола
  9. В результате вулканизации каучука можно получить:
    а) гуттаперчу
    б) резину
    в) эбонит
    г) фенопласт
  10. Укажите формулу элементарного звена бутадиенового каучука:
    а) СН2=СН-СН=СН2
    б) -СН2-СН-СН-СН2-
    в) -СН2-СН=СН-СН2
    г) -СН2=СН –СН=СН2-

Способы получения алкенов. Приложение 1

Исследования выдающегося русского химика Владимира Васильевича Марковникова явились блестящим подтверждением теории химического строения его учителя, А.М. Бутлерова. Результаты этих исследований послужили основой учения о взаимном влиянии атомов как одного из главных положений теории химического строения. В 1869 г. В.В. Марковников защитил докторскую диссертацию на тему « Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

!!!

Реакция Вагнера.

Реакцию окисления олефинов водным раствором перманганата калия открыл в 1888 г. русский химик с немецкой фамилией – Егор Егорович Вагнер. С помощью этой качественной реакции Е.Е. Вагнер доказал непредельный характер некоторых природных соединений: терпенов, лимонена, скипидара. С тех пор этот процесс носит имя ученого – реакция Вагнера.

Правило Зайцева

  • Эта закономерность открыта в 1875 г. выдающимся русским химиком, учеником и тезкой А.М. Бутлерова Александром Михайловичем Зайцевым и носит название правило Зайцева.
  • Реакция дегидратации – полная аналогия реакции дегидрогалогенирования.
  • Де + гидро + галоген + ирование =
    удалять + водород + галоген + (действие).
    Отщепление галогеноводорода.
    Дегидратация отщепление воды

В начале ХХ в. в связи с резким подорожанием натурального каучука возникла острая необходимость в разработке доступного и экономичного способа получения диенов.

В 1926 г. в Советском Союзе был объявлен конкурс на лучший способ получения синтетического каучука. Сроки и условия конкурса были достаточно жесткими.

Победителем оказалась группа химиков под руководством профессора Военно-медицинской академии г. Ленинграда Сергея Васильевича Лебедева. В качестве сырья использовался этиловый спирт.

Этот способ получения бутадиена-1,3 получил название метода Лебедева и долгое время использовался в промышленности.

В 1955 г. Д. Натта с сотрудниками синтезировал полиацетилен, представлявший собой смесь цис-, трансизомеров: цис-полиацетилен, красного цвета, менее устойчив, транс- полиацетилен, синего цвета, более устойчив. Полиацетилен открыл новую эру токопроводящих полимеров. В 1976 г. в лаборатории японского ученого Хидэки Сиракавы было сделано удивительное открытие. Если пленку из этого материала обработать иодом, получается золотистое покрытие с металлическим блеском, которое проводит электрический ток в миллиард раз лучше, чем сам полиацетилен! Эти материалы используются в сотнях электронных и звуковоспроизводящих устройств.

Применение ацетилена. Приложение 2

Понятие о терпенах

  • Каучук — не единственное природное производное изопрена. В природе существует множество углеводородов, структурными фрагментами которых является изопрен. Общее «родовое» название терпены. Общая формула-(С5Н8)n. Терпены очень широко распространены в природе. Многие являются составной частью эфирных масел, придающих растениям специфический аромат. Оцимен содержится в базилике, а лимонен— в кожуре цитрусовых.
  • Эфирными маслами называют нерастворимые в воде маслообразные продукты, которые в отличие от жирных масел полностью испаряются и не оставляют следов на бумаге. Их используют в производстве душистых веществ, для ароматизации косметических средств. Первые рецептуры таких композиций относятся к временам царя Хаммурапи (2100г. до н.э.) Сквален выделяют из печени акулы.

β-каротин содержит длинную цепочку сопряженных двойных связей. Такие фрагменты называют хромофорными группами.

Подобные молекулы окрашивают в желтый цвет лепестки шафрана, в золотой — сладкую кукурузу, в оранжевыйапельсиновый сок, в розовый— мясо лосося. β-каротин содержится в моркови, которая имеет такую характерную окраску. Витамины группы А — производные терпенов. При недостатке витамина А возникает ослабление зрения. Поэтому сырая морковь и морковный сок так полезны для глаз.

Приложение 3. Презентация

Источник