Какой перепад давления теплообменника
Содержание статьи
Руководство по эксплуатации теплообменника
Данные нормы обязан знать каждый из обслуживающего персонала ПТО. Эта инструкция применяется как на разборные, так и на сварные пластинчатые теплообменники.
Необходимо выполнять технику безопасности: одевать защитную одежду и изоляцию, проводить очистительные процедуры. Во время использования агрессивных или загрязняющих жидкостей выполнять установленные меры предосторожности. Перевозка, установка, ввод в эксплуатацию, использование и вывод из него такой техники должны быть в соответствии с правилами производителя.
1. Требования к установке
Правила и нормы установки теплообменников пластинчатого типа для его успешной работы и обслуживания:
- Должен быть свободный доступ к аппарату для его осмотра. Пластины и болты должны легко сниматься.
- Трубопроводы, идущие к прибору, требуют сторонней опоры или подвеса, но не должны опираться на сам агрегат. Это вызовет проблемы.
- Расстояние от рамы ПТО к вырезке для манометров и термометров должно составлять не менее 100 мм.
- Должны быть установлены предохранительные клапаны, которые выдерживают испытательное давление аппарата, на обеих сторонах. Это защитит ПТО от перепадов давления.
- Задняя прижимная плита должна двигаться по всей длине верхней и нижней направляющих во время разборки.
2. Процедура запуска
Теплообменник заполняется водой. Воздух, находившийся внутри, выходит через специальный кран. Сначала жидкость двигается по нагреваемой, а потом по греющей стороне. При запуске нужно проконтролировать стабильные условия (температура, давление в сети). Это обеспечит сохранность прокладок и пластин. Прокладки из EPDM выдерживают температуру до 150 градусов Цельсия, а образцы, изготовленные из Viton, работают при температуре среды до 180 градусов Цельсия. Максимальное давление теплосетей должно быть меньше максимального рабочего давления, указанного в паспорте прибора.
ВНИМАНИЕ! Во время первого использования ПТО повышать температуру можно не более чем на 25 градусов в час. А при следующих пусках/остановках температуру сбавляют/увеличивают максимум на 10 градусов в минуту, а давление — на 10 бар. В случае пренебрежения этими правилами гарантия будет отменена.
3. Эксплуатация теплообменника
При эксплуатации нужно учитывать рабочие параметры пластинчатого теплообменника (температура, давление, среда, расход) и следовать им. Они указаны в спецификации.
Прежде чем запустить оборудование, убедитесь в соответствие всех его действительных параметров с указанными заводским. А также проверьте наличие всех защитных кожухов, в том числе и изоляции.
В системе, к которой осуществляется подключение, не должно быть резких и неожиданных перепадов температуры и давления. Чем медленней наращивается/сбавляется температура и давление в ПТО, тем фактический срок эксплуатации уплотнителей будет больше. При использовании прибора нужно проводить мониторинг всех скачков показателей и записывать их в специальный журнал. Понижение напора и теплоотдачи свидетельствует о засорении прибора.
При пуске нужно открыть воздушные клапаны и вентили, находящиеся за теплообменником (аналогичные спереди агрегата должны быть закрыты). Только после запуска насоса следует медленно открывать передние приспособления, а при полном выходе воздуха соответствующие клапаны закрыть. Это гарантирует стабильность давления.
4. Отключение теплообменника
Главное правило — все делать медленно, ведь при быстром изменении возникнут перепады давления, что приведет к появлению течей и деформации прокладок. При отключении следует постепенно закрывать шаровой кран или регулирующий клапан, который расположен на подающей греющую среду трубе, одновременно охлаждая агрегат до 40 градусов Цельсия. Затем необходимо полностью закрыть вышеуказанные отверстия. Если использовать данный пластинчатый теплообменник не планируется более месяца, т воду в нем нужно слить, а сам аппарат высушить и почистить.
5. Вывод из эксплуатации и хранение теплообменника
Наиболее опасно время простоя такого оборудования, так как есть вероятность появление коррозии. В зависимости от способа очистки аппарата пластины перед (CIP-очистка) или после (ручная очистка) их изъятия очистить и промыть. В первом случае пластины чистят перед изъятием, то есть их промывают специальным средством внутри рамы. Во втором способе пластины моют и чистят отдельно от прибора. Важно после просушки заново зажать пакет пластин так, чтобы ни они, ни модули не были под давлением, но плотно прилегали друг к другу.
Нужно замерять и запомнить расстояние между передней и задней плитой, чтобы при возобновлении работы ПТО стянуть их до того же замера.
Сохранность теплообменного оборудования гарантируют постоянные нормальные условия. Лучше избегать воздействия окружающей среды. В помещение, где он находится, должно быть чистое, без присутствия кислот или растворителей, озона и приборов порождающее его (электросварка).
Подбор и расчет стоимости теплообменника удобным для вас способом
Рассчитаем по параметрам
Делаем расчёт точно и профессионально, без всяких манипуляций
Рассчитать
Есть готовый расчет теплообменника?
Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника
Получить цену
перезвоним в течение 1 минуты
результат от 30 минут
результат от 5 минут
Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).
Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.
6. Повторный ввод в эксплуатацию
При повторном включении в работу теплообменный аппарат нужно тщательно проверить, убедиться в целостности и чистоте пластин и уплотнителей, проверить наличие всех прокладок в определенных местах-канавках.
Затянуть шпильки нужно так чтобы расстояние между задней и передней панелями было такое же, как и до отключения. Пакеты пластин подтягиваются еще на 3% того расстояния, если прибор не герметичен, но не более чем минимальное расстояние между плитами.
7. Обслуживание теплообменника
Теплообменник пластического типа меньше подвержен загрязнению, нежели другие типы, и самоочищается. Это происходит благодаря турбулизации потоков жидкости в образованных каналах между пластинами. Но так как используемая вода редко отличается чистотой и качественностью, то полностью от отложений в оборудовании не избавиться.
Если перепады давления увеличились больше чем на 20% или мощность упала больше 10% в сравнение с показателями в спецификации прибора, следует проверить ПТО на загрязнение отложениями. Чистку необходимо предоставить профессионалам!
Помимо регулярного очищения пластин, нужно следить за резьбовыми соединениями: смазывать, надевать защитные чехлы. Важно чтобы резьба не была деформирована, и на ней не было посторонних веществ (налета, грязи, краски).
Если используется теплоизоляция, она должна поддаваться частичному демонтажу. Это позволит проводить регулярный внешний осмотр.
Частота осмотров зависит от многих факторов (состав протекающих веществ, место установки, нагрузка аппарата, температура жидкостей, технические характеристики), но минимум раз в год прибор следует чистить. Это послужит профилактикой, если не лечением.
При исполнении всех требований эксплуатации теплообменник будет служить долго и надежно. Необходимо будет менять только прокладки и уплотнители, поскольку они имеют свой срок годности и снашиваются.
Течь устраняют подтяжкой пластин до размера, указанного на заводской табличке. Делают это при отсутствии давления на прибор.
Если агрегат не уплотняется, хотя дозатяжка была осуществлена, нужно заменить уплотнители до минимального размера затяжки. Причина такому явлению служат высокие температуры при эксплуатации, они ускоряют старение и изнашивание прокладок.
8. Поиск и устранение неисправностей
При работе теплообменных аппаратов пластинчатого типа возможны появления отклонений от нормального функционирования, которые могут вызвать разные дополнительные факторы. Ниже в таблице описаны распространенные нарушения, их причины и способы их устранения.
Тип нарушения работы | Причина | Способ устранения |
Повышенная потеря давления в аппарате | Загрязнение аппарата | Промывка трубопроводов до ввода ТО в эксплуатацию Очистка ТО Фильтрование жидкостей перед аппаратом |
Повышенная вязкость жидкости | Проверка вязкости, особенно при наличии высоковязких сред | |
Неправильное подключение к сети | Проверить правильность поключения в соотвествии с чертежом. Повернуть раму и/или пластины; это обычно возможно, т.к. наша рама имеет симметричную конструкцию | |
Повышенный расход | Проверка допустимого расхода | |
Потеря теплопередающей способности аппарата | Механическое загрязнение поверхности | Очистка ТО Фильтрование жидкостей перед аппаратом |
Расход слишком велик | Регулировка расхода | |
Неправильное подключение аппарата | Произвести подключение согласно чертежу | |
Накопление вторичных сред в аппарате (напр. масло, неконденсирующиеся газы и т.д.) | Установить соответствующие устройства для вывода вторичных сред | |
Неплотность аппарата | Превышение макс. допустимого давления | Снизить давление до рабочего |
Скачки давления/Резкие колебания давления | Устранить скачки/колебания давления в системе | |
Перегрев, напр. в результате односторонней подачи горячей среды | Устранение возможности перегрева ПТО. Замена уплотнений, применение уплотнений из другого материала | |
Химическое разложение уплотнений ввиду воздействия протекающей жидкости | Замена уплотнений, применения уплотнений из другого материала Использовать промежуточный контур циркуляции | |
Закупорка каналов ПТО. | Очистка ПТО и фильтрация | |
Смешение рабочих сред | Неправильная сборка пакета | Проверить соответствие пакета пластин спецификации |
Коррозия пластин | Установление и устранение причин коррозии, замена пластины или пакета пластин Использование нового пакета пластин из более стойкого материала | |
Неправильное подключение аппарата к сети | Проверить правильность подключения в соответствии с чертежом Повернуть раму и/или пластины; это обычно возможно, т.к. наша рама имеет симметричную конструкцию. |
9. Гарантийные условия
В сроки действительности гарантии запрещено вскрывать теплообменник самостоятельно и без представителя сервисной службы производителя, либо его сервис-партнера в вашем регионе.
При первом запуске теплообменника шаг повышения температуры не должен преувеличивать 25 градусов Цельсия в час. Во время просторного пуска(остановки) давление следует повышать(снижать) на 10 бар в минуту, а температуру — на 10 градусов Цельсия в минуту. Если данные условия эксплуатации не были выполнены, гарантия аннулируется.
Чистка ПТО не входит в гарантийные обязанности.
Источник
Тонкости и хитрости при расчете пластинчатых теплообменников
Вступление: В продолжение задачи «о теплотехнике простыми словами» и знакомства более широкого круга людей с пластинчатыми теплообменниками, теплоснабжением, теплотехникой, представляю данный материал.
Уже довольно много производителей пластинчатых теплообменников (ПТО) в России. И заказчики привыкли рассылать данные для расчета нескольким производителям, чтобы получить от всех расчеты, коммерческие предложения и сравнить — у кого теплообменники дешевле. Стоимость в таких предложениях практически всегда разная. На нее влияет 2 составляющих — коммерческая и инженерная. Коммерческую часть я затрагивать не буду — здесь вопрос ценовой политики, целей и задач каждого производителя, вопросы скидок, рассрочек платежа и пр. Я рассмотрю инженерную составляющую вопроса удешевления или удорожания теплообменников — какие параметры и как влияют на конструкцию и конечно стоимость пластинчатых теплообменников. Итак приступим:
Параметр №1 — Потери давления в теплообменнике
Как влияет: При увеличении допустимых потерь давления стоимость теплообменника уменьшается, при уменьшении допустимы потерь давления стоимость теплообменника увеличивается (чем больше потери давления, тем дешевле теплообменник; чем меньше потери давления, тем дороже теплообменник)
Причина: Чем больше пластин в теплообменнике, тем больше каналов по которым проходит жидкость, тем меньшее сопротивление жидкость испытывает — тем выше стоимость теплообменника
и наоборот.
Что делают при расчете:Если в опросном листе указаны четко допустимые потери давления, то некоторые производители завышают их немного — полметра или метр, а то и в 1,5-2 раза в расчете на то, что заказчик вдруг не силен в теплотехнике и не обратит внимания на этот параметр. А теплообменник будет дешевле — значит вероятность продажи возрастает.
Вывод: Сверяйте расчетные потери давления с указанными Вами в опросном листе!
Параметр №2 — Запас поверхности теплообмена
Как влияет: Чем больше запас, тем выше стоимость
Причина: Чем больше пластин в теплообменнике, тем больше запас поверхности — тем выше стоимость теплообменника и наоборот.
Что делают при расчете:Серьезные производители практически всегда берут 10-15 % по поверхности в расчете. Он может немного сгладить погрешности в данных, чуть реже надо будет чистить теплообменник. Кто желает максимально удешевить теплообменник — всегда берет запас близко к нулю, не более 1%
Вывод: Сверяйте запас поверхности теплообмена в разных расчетах. И решайте что нужно больше — небольшая экономия или спокойствие при эксплуатации.
Параметр №3 — Коэффициент теплопередачи
Как влияет: Чем выше коэффициент теплопередачи, тем эффективнее работает теплообменник, тем ниже его стоимость.
Причина: Коэффициент теплопередачи зависит от скорости течения жидкости. Чем выше скорость — тем интенсивнее идет теплообмен. А чтобы скорость была выше необходимо уменьшить кол-во каналов, т.е. уменьшить количество пластин.
Что делают при расчете: Некоторые производители считают теплообменники с максимальным коэффициентом теплопередачи от 7000 Вт/м.кв.*К и выше. При таком высоком коэффициенте сильно возрастает скорость образования отложений солей кальция, магния в теплообменнике. Т.е. первоначально теплообменник будет дешевле, то зарастать будет гораздо быстрее — чаще чистка, выше последующие расходы
Вывод: Смотрите, чтобы коэффициент теплопередачи не был в расчетах выше 7000 Вт/м.кв.*К! Видел расчеты и с коэффициентом 10000!!!!
Параметр №4 — Диаметр присоединения
Как влияет: Чем больше диаметр патрубков присоединения — тем выше стоимость теплообменника.
Причина: Больший диаметр означает использование большего типоразмера, что дает увеличение стоимости.
Что делают при расчете:С этим параметром хулиганят не всегда. Если расход точно укладывается в Ду 50 например, то ничего не попишешь. А вот если речь идет о пограничном значении когда можно применить меньший диаметр, то тут иногда так и поступают. Например вместо Ду50 берут типоразмер с Ду 32. Выходит сильно дешевле. Но при сужении проходящего сечения возрастает скорость жидкости, будут дополнительные потери давления в патрубках (не считая потерь в самом теплообменнике), возможны шумы. При долгой эксплуатации возможно разрушение пластины вокруг проходного сечения.
Вывод: Смотрите какой расход жидкости в теплообменнике в какой присоединительный диаметр хотят запустить!
Параметр №5 — Рабочее давление
Как влияет: Чем выше рабочее давление — тем дороже теплообменник.
Причина: При более высоком рабочем давлении используются более «толстые» прижимные плиты в теплообменнике, могут быть использованы пластины более толстые.
Что делают при расчете:Если в расчете четко указано рабочее давление, то обычно с этим параметром не шутят. А вот если не указано, то многие норовят посчитать теплообменник на самое низкое рабочее давление — 6 или 10 кгс/см2.
Вывод: Сверяйте рабочее давление в расчете с тем, которые есть или будет у Вас!
Параметр №6 — Толщина и материал пластин
Как влияет: Чем толще пластины — тем дороже теплообменник. Чем выше значение у материала пластин AISI — тем дороже теплообменник. AISI304 сильно дешевле AISI316.
Причина: Более толстые пластины дороже, к тому же их надо в теплообменнике больше — теплопередача хуже через более толстую стенку. В нержавеющей стали AISI316 больше никеля и молибдена чем в AISI304, что повышает ее коррозионостойкость.
Что делают при расчете: Некоторые производители используют более дешевую менее коррозионостойкую сталь AISI304, что снижает срок эксплуатации теплообменника. При чистых средах — тут не важно. А вот на гвс — это самоубийство 🙂 К хлору AISI304 очень неустойчива! При рабочем давлении в 10 кгс/см2 и меньше могут использовать пластины толщиной 0,4 мм (обычно 0,5 мм), что также снижает ресурс теплообменника.
Вывод: Обращайте внимание на толщину и материал пластин в теплообменнике, соотносите эти параметры с рабочим давлением у Вас, назначением теплообменника, качеством воды!
Еще могут оказывать влияние такие факторы как комплектация теплообменника ответными фланцами и пр. Но это уже ближе к коммерции, а не к инженерии — меньше железа за одинаковые деньги 🙂 Это совсем другая история, дойдем и до нее…
В заключение: У нас в компании такими вещами не занимаются. Большой опыт в этой сфере, знаем чем это заканчивается. Да и просто стыдно такое творить…
Искренне Ваш,
товарищ Артем
Источник
Пластинчатые теплообменники — дело тонкое. Окончание
Для тепловой схемы, показанной на рис. 2, система уравнений легко решается численным методом на ПЭВМ. В качестве варьируемых параметров используются:
(Gсет/Gсет, 0) — отношение фактического расхода сетевой воды к расчетному;
Tвых, к — температура воды на выходе из котлов (равна температуре греющего теплоносителя на входе в подогреватель).
На графиках рис. 8 (а, б) представлены полученные решения системы уравнений для котельной № 20 г. Дзержинска.
Для вышеприведенного численного примера при (Ф/Ф0)=0,34, Твых=105 ОС, (Gсет/Gсет,0) = 1 по графику рис. 8 получим граничную температуру гр. = -17,0 ОС.
В заключение следует отметить, что вышеописанная методика диагностики загрязненности ПТО в настоящее время внедрена в повседневную практику нашего предприятия.
В сотрудничестве с ООО «Реал-Информ» (г. Н.Новгород) разработан микропроцессорный прибор, сочетающий в себе шестиканальный измеритель-регистратор температуры (для контроля двух ПТО, установленных параллельно) и блок математической обработки информации. На дисплее прибора индицируются текущие значения всех измеренных температур и расчетные значения (Ф/Ф0) и
Данный прибор не дорог, его стоимость в комплекте с датчиками температуры составляет около 15 тыс. руб.
Прибор может оказать неоценимую помощь персоналу теплоснабжающего предприятия, сталкивающемуся в своей деятельности с эксплуатацией пластинчатых (и других) водо-водя-ных теплообменников. На основании данных, полученных с его помощью, можно отслеживать динамику загрязнений ПТО, рационально планировать химические промывки (очистки) оборудования с учетом прогноза погодных условий.
Рекомендации по подбору ПТО при проектировании объектов теплоснабжения
В настоящее время все фирмы-поставщики ПТО при их продаже предлагают заказчикам услуги по подбору теплообменников, в зависимости от исходных данных и специфических требований заказчика.
При этом обе стороны заинтересованы в положительном эффекте в результате внедрения ПТО. Сами заказчики, как правило, не могут квалифицированно подобрать ПТО, поскольку методики их теплового и гидравлического расчета являются коммерческой тайной. В качестве исходных данных для выбора ПТО запрашиваются:
— тепловая мощность;
— температуры входа/выхода рабочих сред по обоим потокам;
— максимально допустимый (располагаемый) перепад давления по обоим потокам.
В результате расчета по программе фирмы-изготовителя получают величины:
— типоразмер ПТО;
— тип и количество пластин;
— расчетный коэффициент теплопередачи;
— расчетный перепад давления по обоим потокам.
Нюанс заключается в том, что при одних и тех же заданных значениях теплового потока и температур теплоносителей могут быть подобраны ПТО разного типоразмера с существенно разным расчетным коэффициентом теплопередачи, количеством пластин и т.д. (Расчетный коэффициент теплопередачи k0, как правило, напрямую зависит от назначенных величин допустимого перепада давления). Очевидно, например, что теплообменник с k0=4500 Вт/(м2*ОС) будет иметь в 1,7 раза меньшую поверхность, чем теплообменник с k0 = 7500 Вт/(м2*ОС). При этом второй ПТО примерно в 1,5 раза дешевле.
Многие заказчики, не искушенные в проблемах подбора ПТО, и, к тому же, ограниченные в финансовых средствах подтверждают выбор ПТО с более высоким коэффициентом теплопередачи. При этом они обрекают себя на полный комплекс вышеописанных в предыдущих разделах проблем, связанных с потерей тепловой эффективности ПТО при загрязнении.
Как же быть в такой ситуации? Ответ на этот вопрос неоднозначен.
Во-первых, следует рекомендовать эксплуатационникам при выдаче технического задания на подбор ПТО в обязательном порядке учитывать перспективу их возможного загрязнения на основе имеющихся данных химико-аналитического контроля теплообменивающихся сред с учетом сезонных изменений.
Во-вторых, не следует устанавливать ПТО со слишком высоким значением k0. На наш взгляд оптимальный диапазон k0 для ПТО составляет 4500-6000 Вт/(м2*оС).
Здесь необходимо заметить, что проблема устранилась бы сама собой, если бы фирмы-изготовители ПТО в своих расчетных программах учитывали возможность подбора ПТО при наличии заданной степени загрязненности (толщины слоя накипи). Однако такая услуга не предоставляется. В чем причина? Не умеют считать или в водопроводных и тепловых сетях западных стран течет дистиллят?
Приходится искать обходные пути. Некоторые ошибочно полагают, что решить проблему можно путем введения запаса поверхности нагрева, т.е. рассчитать ПТО без учета загрязнения, а затем добавить некоторое количество пластин (например 20%) и дело, как говорится, «в шляпе». Однако это неправильный подход, поскольку при тех же расходах теплоносителей уменьшается скорость их течения по каналам, что ведет к снижению коэффициента теплопередачи примерно в той же пропорции. (Этот вывод следует так же из формулы (2), поскольку параметр «Ф» водоподогревателя при добавлении пластин остается постоянным). Тепловой поток же при этом практически не изменяется
Правда, вышесказанное справедливо только для чистого ПТО. В случае с загрязненным ПТО возникает интересный эффект, выражающийся в том, что вследствие снижения абсолютного значения коэффициента теплопередачи теплообменника, обусловленного добавлением пластин, его относительная величина (k/k0) при том же слое отложений становится больше. В результате рост поверхности нагрева не компенсируется снижением коэффициента теплопередачи и тепловой поток (при прочих равных условиях) несколько увеличивается. Расчеты показывают, что для теплообменника с расчетным коэффициентом теплопередачи 5000 Вт/(м2.ОС) и расчетным параметром Ф0=2,22, при толщине слоя накипи 0,2 мм увеличение количества пластин на 20% обеспечивает прирост теплового потока только на 4,08%.
Таким образом, прирост поверхности нагрева ПТО (путем добавления пластин) не обеспечивает эквивалентного прироста теплового потока.
Добавление пластин экономически оправдано только в двух случаях:
— при необходимости увеличения тепловой нагрузки ПТО, т.е. расходов теплоносителей по обоим потокам;
— при необходимости уменьшения гидравлического сопротивления ПТО при неизменных расходах теплоносителей и тепловой нагрузке.
Правильная методика подбора ПТО с учетом прогнозируемого загрязнения следует из вышеприведенной теоретической модели и заключается в следующем:
1. Исходя из требований технологического процесса определяются расчетные температуры теплоносителей (при загрязненном состоянии ПТО), например:
2. Определяется соответствующий этим температурам параметр теплообменника Ф = 2,22.
3. Назначается желаемый коэффициент теплопередачи ПТО, например 5000 Вт/(м2*ОС). По графику рис.1 при заданной толщине слоя накипи (например 0,2 мм) определяется относительный коэффициент теплопередачи (k/k0=0,545).
4. Вычисляется параметр Ф0 при чистой поверхности нагрева: Ф0=Ф/(k/k0)=4,07.
5. При известных отношении расходов (Gнагр/Gгр=(110-80)/(95-70)=1,2) и входных температурах теплоносителей, выходные температуры найдутся из системы уравнений:
В итоге получим четыре расчетные температуры для выбора ПТО при проектировании.
Именно эти температуры должны быть включены в техническое задание, передаваемое фирме-изготовителю для подбора ПТО.
Вопрос: а что же все-таки делать в ситуации, когда установленные на объекте ПТО не обеспечивают подогрев воды до нужной температуры?
В первую очередь необходимо провести анализ, в ходе которого определить:
— степень загрязнения ПТО отложениями (по описанной выше методике);
— соответствие входных температур теплоносителей и их расходов расчетным.
Для повышения теплопроизводительности ПТО можно рекомендовать следующие мероприятия:
1. Химическая промывка (или механическая очистка).
2. Повышение температуры и расхода греющего теплоносителя.
3. Замена ПТО.
4. Реконструкция ПТО с переводом на двухходовую схему и увеличением количества пластин.
Последнее мероприятие было нами апробировано на котельной № 87 г. Сергач. На указанной котельной по проекту были установлены два ПТО отопления марки FPS-43-163-1E фирмы «FUNKE» тепловой мощностью 8,0 МВт каждый. В процессе эксплуатации обнаружилось, что имеет место быстрое зарастание поверхностей нагрева ПТО накипными отложениями, вследствие чего котельная оказалась «заперта» — не удавалось нагреть сетевую воду выше 65-70 ОС (при графике 95/70 ОС).
Обследование показало — при расчетном коэффициенте теплопередачи ПТО 6600 Вт/(м2*ОС), фактическое его значение составляло всего лишь 1736-2343 Вт/(м2*оС), что соответствует относительному параметру (Ф/Ф0)= 0,26-0,36. При разборке ПТО на поверхности нагрева были обнаружены накипные отложения толщиной 0,2-0,3 мм следующего состава: 78% солей кальция, 22% оксидов железа.
Для нормализации теплоснабжения от котельной в первую очередь нами были предприняты меры по увеличению расхода (примерно на 30%) и температуры котловой воды до максимальной — от 110 до 115 ОС, а также корректировке реагентного водно-химического режима. Хотя все эти мероприятия дали ограниченный эффект (удалось повысить температуру сетевой воды на 5-7 ОС), в сочетании с регулярными химпромывками это позволило не допустить срыва теплоснабжения жилого района.
Радикально проблема была решена только в летний период 2003 г., когда в сотрудничестве с известной фирмой-производителем пластинчатых теплообменников «Ридан» нами была проведена реконструкция ПТО с переводом на двухходовую схему движения теплоносителей и увеличением количества пластин со 163 до 250 шт.
В результате реконструкции удалось полностью нормализовать теплоснабжение от котельной.
К отрицательным последствиям реконструкции ПТО следует отнести следующие:
— гидравлическое сопротивление ПТО увеличилось с 2,0 до 6,8 м вод. ст., т.е. в 3,4 раза;
— осложнена операция разборки ПТО из-за устройства портов и подводящих трубопроводов с двух сторон теплообменника.
Выводы
1. Поверхности нагрева ПТО подвержены загрязнению отложениями накипи, окислов железа и других механических примесей, содержащихся в сетевой воде. Интенсивность и характер загрязнения определяется качеством воды (жесткостью, концентрацией примесей) и ее температурой.
2. Загрязнение ПТО с высоким расчетным коэффициентом теплопередачи сопровождается значительным снижением тепловой эффективности аппарата.
3. Химическая промывка ПТО (в особенности загрязненных окислами железа) является сложной технологической операцией, требует профессионального подхода к выбору реагентов и технологий промывки.
4. С целью уменьшения загрязнения ПТО продуктами коррозии железа и другими механическими примесями, содержащимися в сетевой воде, следует применять осветлительные фильтры, инерционно-гравитационные грязевики типа ГИГ и др. устройства очистки.
5. Для предотвращения накипеобразования на поверхностях нагрева ПТО, подогревающих сетевую воду с высокой жесткостью, и снижения скорости коррозии тепловых сетей рекомендуется применять реагентный (комплексонный) водно-химический режим тепловых сетей.
6. Предложена эффективная методика диагностики загрязненности теплообменных аппаратов, разработано приборное и программное обеспечение для создания системы мониторинга степени загрязнения с оценкой остаточного ресурса работы до промывки (очистки).
7. При проектировании и выборе ПТО в обязательном порядке необходимо учитывать возможное загрязнение поверхности нагрева. Предложена методика подбора ПТО с учетом загрязнения.
Литература
1. Соколов Е.Я. «Теплофикация и тепловые сети», Издание 7-е, 2001 г., М., Издательство МЭИ.
2. Михеев М.А., Михеева И.М. «Основы теплопередачи», 1973 г., М., «Энергия».
3. Барон В. Г. «Легенды и мифы современной теплотехники или пластинчатые и кожухотрубные теплообменные аппараты»//«Новости теплоснабжения», 2004 г., № 8, с. 38-42.
4. Дрейцер Г. А. «О некоторых проблемах создания высокоэффективных трубчатых теплообменных аппаратов» // «Новости теплоснабжения», 2004 г., № 5, с. 37-43.
5. Тарадай А.М., Коваленко Л.М., Гурин Е.П. «Контроль качества химической промывки от загрязнения теплообменных аппаратов» // «Новости теплоснабжения». Интернет-сайт www.rosteplo.ru.
6. Слепченок В.С., Быстров В.Д., Зак М.Л., Палей Е.Л. «Отопительные котельные малой мощности» // «Новости теплоснабжения», 2004 г., № 9, с. 24-33.
Cтраницы: | 1 | 2 | 3 | 4 |
Источник