Какой газ является побочным продуктом реакции фотолиза

Содержание статьи

Принципы и особенности фотолиза воды

Что такое фотодиссоциация или фотолиз воды

Определение

Фотолиз воды — распад водных молекул из-за воздействия солнечного света (фотонов) при фотосинтезе.

Он является частью процесса фотосинтеза в растениях и способствует выделению большого количества кислорода в атмосферу.

Фотодиссоциация может протекать и вне видимого света, если фотон обладает достаточной энергией (выше солнечной — ультрафиолетовые лучи, рентгеновские или гамма-лучи).

Фотолиз возникает из-за воздействия светового фотона на воду.

Последовательность фотосинтеза воды

Процесс фотосинтеза состоит из двух фаз: световой и темновой. Фотолиз осуществляется в рамках световой фазы.

Световая фаза фотосинтеза

В листьях растений содержатся хлоропласты, полные особых пигментов:

  1. Хлорофилл — значим только для фотосинтеза. Его содержится огромное количество (около 400 молекул).
  2. Каротиноиды — поглощают коротковолновой солнечный свет, передают хлорофиллу энергию, защищают его от окисления кислородом, который выделяется при фотосинтезе.

Примечание

На количество хлорофилла влияет концентрация тяжелых металлов (например, меди, цинка, марганца) и количество углерода в листьях растений.

Фотолиз происходит только в 1% молекул хлорофилла. Все другие собирают свет, объединяясь и становясь антенными комплексами. Собирая свет, молекулы хлорофилла приходят в возбуждение. Оно передается в реакционные центры. В центрах есть две фотосистемы. В каждой из них — особые молекулы хлорофилла (в первой P680, а во второй P700). Они принимают световые кванты конкретной длины — 680 и 700 нм. При этом каждая система выделяет один электрон на более высокий уровень.

Первая фотосистема способствует восстановлению количества электронов при посредстве переносчиков из второй системы. А вторая система забирает у воды электрон, тем самым давая начало ее фотолизу (распадурасщеплению) на ионы водорода и кислород. Кислорода выделяется очень много. Он является побочным продуктом, высвобождается в атмосферу. Водород остается и накапливается в мембране, чтобы продолжить участвовать в дальнейших реакциях уже в темновой фазе.

Основные этапы фотосинтеза воды:

  1. На хлорофилл действует фотон света. Хлорофилл начинает выделять электроны. Те из них, которые заряжены отрицательно, собираются на мембране. Электроны в хлорофилле заканчиваются. Световой квант воздействует дальше — на воду, что вызывает собственно фотолиз, то есть распад молекул воды.
  2. Протоны водорода (заряжены положительно) тоже скапливаются на мембране. Между ними и отрицательными электронами зажимается тилакоид («мешочек» с мембраной в хлоропласте). Начинается производство кислорода (гидроксильными ионами).
  3. Затем специальная группа ферментов аденозинтрисфосфатсинтаза (АТФ-синтаза) доставляет протоны в ткани, где их подхватывает еще одна особая группа, которая специально предназначена для работы в углеводных реакциях — никотинамиддинуклеотидфосфат (НАДФ).

Фотосинтез

Темновая фаза фотосинтеза

Она проходит после фотолиза и уже без участия света. В этот период восстанавливается глюкоза (благодаря растворенному в воде углекислому газу, НАДФ и АТФ) — цикл Кальвина (процесс открыл ученый по фамилии Кальвин).

Здесь участвует запасенная в предыдущей фазе энергия.

Место проведения реакций темновой фазы — строма хлоропластов. Углерод поступает туда через устьица.

Примечание

Фотолиз, проходящий в световой фазе, готовит все необходимые вещества для будущей реализации темновой фазы.

Избыток глюкозы при его возникновении будет отложен в виде крахмала (запасное питательное вещество для всего растения).

Также на этом этапе образуются нуклеотиды, спирты, аминокислоты.

Фотосинтез 2

Химические основы фотолиза воды

Хлорофилл своим химическим составом напоминает гемоглобин крови. Это обусловлено наличием порфиринового кольца с магнием в центре.

Фотосинтез с химической точки зрения — это процесс восстановления углерода с помощью энергии солнца. В животных организмах она появляется вследствие метаболизма углеводов (их животные получают с растительной пищей). Углеводы проходят через окисление.

По степени способности к гидролизу углеводы делят на несколько групп:

  • моносахариды;
  • олигосахариды;
  • полисахариды.

В результате второй фазы фотосинтеза образуется моносахарид — глюкоза и полисахарид — крахмал.

Что участвует в реакции, формула

В реакции участвует вода и электрон.

(2H_2O=4H+4e_-+O_2)

Электроны (e) пополняют затраченный при фотосинтезе запас хлорофилла.

Побочным продуктом данной реакции выступает кислород ((O_2)).

Формула

Что выделяется при фотолизе

Выделяется большое количество свободного кислорода в атмосферу. А также ионы водорода, которые накапливаются в избытке на мембране, создавая световые запасы для темновой фазы фотосинтеза.

Читайте также:  Какие продукты можно есть маме после родов

Именно благодаря реакции фотолиза воды может образовывать много кислорода, который дает возможность жить всему живому на земле.

Насколько полезной была для вас статья?

Рейтинг: 4.00 (Голосов: 2)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Источник

Фотолиз

Фотодиссоциация (или фотолиз) — химическая реакция при которой химические соединения разлагаются под действием фотонов. Фотодиссоциация не ограничена видимым светом. Для того, чтобы иметь достаточную энергию для разрушения молекулы фотон, являющийся электромагнитной волной, должен обладать энергией видимого света или выше (ультрафиолет, рентгеновские лучи, гамма-лучи). Процесс определяется взаимодействием фотона и целевой молекулы.

Роль в фотосинтезе

Фотолиз является частью фотосинтеза, которая протекает в гранах хлоропластов. При фотолизе свет, поглощенный хлорофиллом превращается в химическую энергию, которая затем используется для разложения воды на водород и кислород. Кислород выделяется в виде побочного продукта, а водород связывается с коферментом НАДФ с образованием НАДФH2.

Фотолиз в атмосфере

Фотолиз также протекает в атмосфере как часть последовательности реакций в ходе которой первичные загрязняющие вещества, такие как углеводороды и оксиды азота, взаимодействуют с образованием вторичных загрязняющих веществ, таких как пероксиацилнитраты. См. подробнее статью смог.

Две важнейших реакции фотодиссоциации в тропосфере

Первая:

O3 + hν → O2 + O(1D) λ < 320 nm

в ходе которой генерируется возбужденный атомарный кислород, который при дальнейшей реакции с водой даёт радикал гидроксила:

O(1D) + H2O → 2OH

Гидроксил-радикал является ключевым в химии атмосферы, как инициатор окисления углеводородов в атмосфере, а также действующий как моющее средство.

Вторая:

NO2 + hν → NO + O

-ключевая реакция при образовании тропосферного озона.

Образование озонового слоя также связано с фотодиссоциацией. Озон в стратосфере Земли образуется под воздействием ультрафиолета на кислородную молекулу, содержащую два атома кислорода (O2), которая разлагается на индивидуальные атомы (атомарный кислород). Атомарный кислород затем взаимодействует с неразрушенным O2 с образованием озона, O3.

Фотолитическим является процесс разрушения хлорфторуглеводородов в верхних слоях атмосферы с образованием озоноразрушающих свободных радикалов хлора.

Астрофизика

В астрофизике фотодиссоциация является одним из важнейших процессов разрушения и образования новых молекул. В вакууме межзвёздного пространства, молекулы и свободные радикалы могут существовать длительное время. Скорость фотодиссоциации очень важна для изучения состава межзвёздного вещества из которго образуются звёзды.

Типичный пример реакции фотолиза в межзвёздном пространстве (hν — обозначение кванта света, фотона):

Многофотонная диссоциация

В сравнении с ультрафиолетом или другими фотонами высоких энергий, энергии одиночных фотонов инфракрасного спектрального диапазона обычно недостаточно для прямой фотодиссоциации молекул. Однако, после поглощения серии инфракрасных фотонов молекула может прирастить свою внутреннюю энергию до уровня, превышающего порог диссоциации. Многофотонная диссоциация может быть достигнута при использовании лазеров высоких энергий, таких как углекислотный лазер, лазер на свободных электронах, или при длительном времени взаимодействия молекул с потоком излучения без возможности быстрого охлаждения. Последний метод позволяет добиваться многофотонной диссоциации даже под воздействием излучения абсолютно чёрного тела.

Флэш-фотолиз

Флэш-фотолиз — метод, при котором импульс лазера, продолжительностью несколько наносекунд (пикосекунд, фемтосекунд) возбуждается лампой-вспышкой. Метод разработан в 1949 году М. Ойгеном, Р. Норришем и Дж. Портером, удостоенным Нобелевской премии по химии в 1967 году за это открытие.

См. также

  • Фотокатализ
  • Фотоводород
  • Фотохимия

Wiki Foundation. 2010.

Источник

Что такое фотосинтез и почему он так важен для нашей планеты

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Рис.1. Строение хлоропласта высших растений.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Читайте также:  Какую еду можно есть чтобы похудеть список продуктов

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Пигменты хлоропластов

Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:

  • Хлорофиллы:
  • хлорофилл а — у большинства фотосинтезирующих организмов,
  • хлорофилл b — у высших растений и зелёных водорослей,
  • хлорофилл c — у бурых водорослей,
  • хлорофилл d — у некоторых красных водорослей.
  • Каротиноиды:
  • каротины — у всех фотосинтезирующих организмов, кроме прокариот;
  • ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот
  • Фикобилины — красные и синие пигменты красных водорослей.

В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.

Хлорофилл

Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430-460 нм) и красной (650-700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.

Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.

Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.

Каротиноиды

Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску.

Функции каротиноидов:

  • Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450-570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.
  • Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.

Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.

Учите биологию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду BIO72020 вы получите бесплатный доступ к курсу биологии 7 класса, в котором изучается тема фотосинтеза.

Что происходит в процессе фотосинтеза

Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества.

Процесс фотосинтеза можно разделить на две фазы:

1. Световая.

2. Темновая.

В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.

Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы. Схемы процессов фотосинтеза представлены на рис.2. Подробное описание процессов смотри далее.

Рис.2. Схема процессов фотосинтеза и суммарное уравнение фотосинтеза.

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II.
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.
Читайте также:  Какие продукты можно малышу в 6 месяцев

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I, отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ.

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.

Рис.3. Суммарные уравнения и частные реакции фотосинтеза.

Значение фотосинтеза

В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода.

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

Заключение

Каждый год на нашей планете благодаря фотосинтезу производится около 200 миллиардов тонн кислорода, из которого образуется озоновый слой, защищающий от ультрафиолетовой радиации. Фотосинтез помогает поддерживать состав атмосферы и препятствует увеличению количества углекислого газа. Без растений и кислорода, который они выделяют в процессе фотосинтеза, жизнь на нашей планете была бы просто невозможна.

Источник