Какой датчик используется для измерения давления

Содержание статьи

Датчик давления

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 мая 2019; проверки требуют 8 правок.

Датчик давления — устройство, физические параметры которого изменяются в зависимости от давления измеряемой среды (жидкости, газа, пара). В датчиках давление измеряемой среды преобразуется в унифицированный пневматический, электрический цифровой код или сигналы.

Принципы реализации[править | править код]

Датчик давления состоит из первичного преобразователя давления, в составе которого чувствительный элемент — приемник давления, схемы вторичной обработки сигнала, различных над конструкции корпусных деталей, в том числе для герметичного соединения датчика с объектом и защиты от внешних воздействий и устройства вывода информационного сигнала. Основными отличиями одних приборов от других являются пределы измерений, динамические и частотные диапазоны, точность регистрации давления, допустимые условия эксплуатации, массогабаритные характеристики, которые зависят от принципа преобразования давления в электрический сигнал: тензометрический, пьезорезистивный, ёмкостный, индуктивный, резонансный, ионизационный, пьезоэлектрический и другие.

Тензометрический метод[править | править код]

Чувствительные элементы датчиков базируются на принципе изменения сопротивления при деформации тензорезисторов, приклеенных к упругому элементу, который деформируется под действием давления.

Пьезорезистивный метод[править | править код]

Основан на интегральных чувствительных элементах из монокристаллического кремния. Кремниевые преобразователи имеют высокую чувствительность благодаря изменению удельного объемного сопротивления полупроводника при деформировании давлением.

Для измерения давления чистых неагрессивных сред применяются так называемые Low cost — решения, основанные на использовании чувствительных элементов либо без защиты, либо с защитой силиконовым гелем.

Для измерения агрессивных сред и большинства промышленных применений используется преобразователь давления в герметичном металло-стеклянном корпусе, с разделительной диафрагмой из нержавеющей стали, передающей давление измеряемой среды посредством кремнийорганической жидкости.

Ёмкостный метод[править | править код]

«Сердцем» датчика давления является ёмкостная ячейка. Ёмкостный метод основан на зависимости изменения электрической ёмкости между обкладками конденсатора и измерительной мембраны от подаваемого давления. Основным преимуществом ёмкостного метода является защита от перегрузок (изм. мембрана при перегрузке ложится на стенки «обкладки» конденсатора, длительное время не подвергаясь деформации, при снятии перегрузки мембрана восстанавливает исходную форму, при этом дополнительная калибровка сенсора не требуется), также обеспечивается высокая стабильность метрологических характеристик, уменьшение влияния температурной погрешности за счет малого объема заполняющей жидкости непосредственно в ячейке.

Резонансный метод[править | править код]

В основе метода лежит изменение резонансной частоты колеблющегося упругого элемента при деформировании его силой или давлением. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора.

К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, невозможность проводить измерения в агрессивных средах без потери точности показаний прибора.

Индуктивный метод[править | править код]

Основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

Ионизационный метод[править | править код]

В основе лежит принцип регистрации потока ионизированных частиц. Аналогом являются ламповые диоды.

Лампа оснащена двумя электродами: катодом и анодом, — а также нагревателем. В некоторых лампах последний отсутствует, что связано с использованием более совершенных материалов для электродов.

Преимуществом таких ламп является возможность регистрировать низкое давление — вплоть до глубокого вакуума с высокой точностью. Однако следует строго учитывать, что подобные приборы нельзя эксплуатировать, если давление в камере близко к атмосферному. Поэтому подобные преобразователи необходимо сочетать с другими датчиками давления, например, емкостными. Зависимость сигнала от давления является логарифмической.

Пьезоэлектрический метод[править | править код]

В основе лежит прямой пьезоэлектрический эффект, при котором пьезоэлемент генерирует электрический сигнал, пропорциональный действующей на него силе или давлению. Пьезоэлектрические датчики используются для измерения быстроменяющихся акустических и импульсных давлений, обладают широкими динамическими и частотными диапазонами, имеют малую массу и габариты, высокую надежность и могут использоваться в жестких условиях эксплуатации.

Регистрация сигналов датчиков давления[править | править код]

Сигналы с датчиков давления могут быть как медленноменяющимися, так и быстропеременными. В первом случае их спектр лежит в области низких частот. Для того, чтобы с высокой точностью оцифровать такой сигнал, необходимо подавить высокочастотную часть спектра, полностью состоящую из помех. Это особенно актуально в промышленных условиях.

Специально для ввода медленноменяющихся сигналов используются интегрирующие АЦП. Они проводят измерение не мгновенного значения сигнала (которое изменяется под действием помех), а интегрируют сигнальную функцию за заданный промежуток времени, который заведомо меньше постоянной времени процессов, происходящих в контролируемой среде, но заведомо больше периода самой низкочастотной помехи. Интегрирующие АЦП выпускают многие зарубежные фирмы (Texas Instruments, Analog Devices и др).

Для измерения переменных давлений применяют датчики с аналоговым выходным сигналом, например, 0-20, 4-20 мА и 0-5, 0,4-2 В.

Читайте также:  Какое давление газа должно быть в газовом котле

Пьезоэлектрические датчики применяются для измерения быстропеременных процессов в диапазоне частот от единиц Гц до сотен кГц.

Отличие от манометра[править | править код]

В отличие от датчика давления, манометр — прибор, предназначенный для измерения (а не просто преобразования) давления. В манометре от давления зависят показания прибора, которые могут быть считаны с его шкалы, дисплея или аналогичного устройства.

См. также[править | править код]

  • Метрология
  • Измерение давления

Источник

Виды датчиков для контроля давления и область их использования

Такие приборы представляют собой измерительные устройства с чувствительными элементами, изменяющими физические параметры в зависимости от давления окружающей среды.

В отличие от манометров, которые только измеряют давление и демонстрируют показания на шкале, датчики еще и преобразуют полученную величину в унифицированный сигнал или цифровой код, который передается по сети технической системы и используется для регулирования всего процесса.

Таким образом, в датчиках обязательно предусматривают не только приемник давления (чувствительный элемент), а и устройства вывода информационного сигнала. И все места стыков и соединений защищаются герметичными соединениями.

Классификация

Датчики давления классифицируют по нескольким признакам. Первый из них — измеряемая характеристика:

  • Абсолютное давление — показатель в измеряемой среде относительно абсолютного нуля (вакуума).
  • Избыточное давление — уровень увеличения давления в среде относительно барометрического (в земной атмосфере).
  • Разрежения — степень уменьшения давления относительно барометрического.
  • Давления/разрежения: можно измерять как увеличение, так и уменьшение относительно показателей атмосферного давления.
  • Разности давлений (дифференциальные): замеряют, насколько различаются показатели в двух разных средах или в 2 удаленных точках процесса.
  • Гидростатического: измеряют разность между полным и динамическим давлением, используются для трубопроводов.

Еще одна классификация — по методу измерения давления:

  • Высота жидкости в колонне. По такому принципу работают манометры с откалиброванной шкалой, заполненные водой или ртутью. Водные считаются более чувствительными и точными.
  • Упругая деформация. Метод основан на таком соответствии: степень деформации упругого материала прямо пропорциональна прикладываемому усилию (давлению).
  • Электрические методы. По такому принципу работают тензодатчики: изменение размера сказывается на электрическом сопротивлении проводника.

В зависимости от всех этих характеристик выделяют следующие типы датчиков:

  1. Упругие датчики зачастую используются для измерения давления жидкости. Представляют собой прибор с жидкостью в отсеке с одной упругой стенкой. эта эластичная «мембрана» отклоняется при изменении показаний, и на основании этих отклонений высчитывается величина. Такие приборы чувствительные и хрупкие, сбиваются при воздействии вибраций.
  2. Трубки Бурдона: внутрь трубки подается давление, что вызывает ее упругую деформацию (эллипс или овал в сечении стремится принять форму круга, а свободный конец трубки перемещается). Чаще всего по такому принципу работают манометры со стрелочным циферблатом. Это — портативные модели, нетребовательные в обслуживании, но работающие с низкой точностью и подходящие только для статических измерений.
  3. Сильфоны: устройства цилиндрической формы со складками, деформируются при сжатии и расширении. Такие приборы подключаются к переключателям и могут использоваться только при давлениях ниже 200 Па.
  4. Мембраны и диафрагмы представляют собой резиновые, металлические, пластиковые или кожаные диски. Отличаются чувствительностью к резким изменениям давления, а также подходят для измерения низких величин, менее 2-7Па. Также могут применяться в агрессивных средах.
  5. Электрические датчики устанавливаются наравне с упругими, увеличивая точность измерения и обеспечивая передачу электрического сигнала на контрольный пункт.
  6. Емкостные, состоящие из параллельных пластин-конденсаторов, соединенных с металлической диафрагмой. также в конструкции есть электроды, запитанные от высокочастотного генератора. Подходят для измерения в пределах 2,5-70 МПа.
  7. Индуктивные, с ферромагнитным сердечником, обмотками и упругим элементом. Сердечник перемещается при изменении давления, и напряжение между обмотками тоже меняется. В зависимости от степени калибровки напряжения и типа упругого элемента диапазон измеряемых значений может колебаться в пределах 250Па — 70 МПа.
  8. С магнетосопротивлением. Представляют собой конструкцию с ферромагнитным сердечником, пластиной и гибким элементов. При их перемещении изменяется магнитный поток цепи. Чувствительность измерений в этом случае составляет 0,35 МПа.
  9. Пьезоэлектрические с датчиком-кристаллом, который формирует электрический заряд в тот момент, когда воспринимает давление. Есть прямая зависимость между изменением этих величин, поэтому устройство получается чувствительное, с быстрым срабатыванием (низким временем отклика). Чувствительность в этом случае тоже на уровне, в пределах 0,1МПа, а верхний предел измерений — 100 МПа.
  10. Потенциометрические оснащаются рычагом, прикрепленным к упругому датчику. Когда упругий элемент деформируется, рычаг перемещается по потенциометру, и тем самым обеспечивается измерение сопротивления. Такие датчики работают с низкой чувствительностью и не подходят для постоянного использования в ответственных процессах.
  11. Тензометрический: изменения давления определяются путем расчета колебаний сопротивления мостовой схемы Уитстона. Чувствительность датчиков остается высокой только в случае стабильной температуры процессов. Диапазон измерений — до 1400 МПа с чувствительностью 1,4-3.5 МПа.
  12. Вибрационные (с виброэлементом). В этом случае измеряются изменения резонансной частоты вибрирующих элементов, а сам датчик расположен в изолированном цилиндре под вакуумом. Такие устройства подходят для измерения стабильных величин без резких скачков и практически не подвержены воздействию температур. Допустимый диапазон измерений — до 0,3 МПа.
  13. Дифференциального давления: измеряется разность давления, и эта величина преобразуется в передаваемый сигнал. Используется в паре с емкостным элементом или с диафрагмой, считается минимально инвазивным. Чувствительность измерений и их диапазон зависит от того, какие именно электрические и упругие элементы используются в конструкции. Чаще всего такие устройства используются для измерения перепадов величин.
  14. Вакуумные или вакуумметры работают при давлении ниже атмосферного, в вакууме или при чрезвычайно низких величинах.
  15. Тепловые, работают по принципу вакуумметров, когда газовая теплопроводность изменяется из-за давления. Принцип используемый в данном типе датчиков заключается в изменении газовой теплопроводности под действием давления. Такие чувствительные элементы работают только при низких давлениях.
  16. Приборы ионизации могут быть с горячим либо с холодным катодом (отличаются по принципу испускания электронов). Такие устройства считаются очень чувствительными и подходят для измерения дробных долей.
Читайте также:  Низкое давление учащенный пульс какое

Также выпускаются приборы с разной степенью чувствительности. Некоторые работают с минимальной погрешностью, но требуют больше времени для проведения измерений. Их целесообразно использовать там, где показатели давления в системе стабильны. Если же эта величина сильно изменяется за короткий промежуток времени, то решают «пожертвовать» точностью в пользу скорости проведения измерений.

Области применения

Датчики давления как устройства, преобразующие измеряемую величину в унифицированный цифровой сигнал, могут использоваться в сфере ЖКХ, на производстве (химическом, пищевом, нефтехимическом, в машиностроении, металлургии, судостроении, энергетике) и для проведения лабораторных экспериментов.

В жилищно-коммунальных хозяйствах и в быту такие устройства монтируются в системы теплового учета и автоматического контроля инженерных сетей. Большинство моделей универсальны и рассчитаны на использование в жидких, газообразных и химически агрессивных средах. В системах контроля за технологическими процессами (в фильтрах, насосах, открытых и закрытых емкостях) часто используются датчики дифференциального давления, а приборы, измеряющие разность давления, широко применяются на предприятиях энергетической отрасли.

Критерии выбора

При подборе подходящего устройства обязательно учитывают:

  • место установки, тип технологического процесса и оборудования;
  • диапазон измерений;
  • тип и температура транспортируемой среды;
  • тип унифицированного выходного сигнала;
  • необходимая точность проведения измерений (чем ответственнее технологический процесс, тем выше нужна точность).

Компания «Измеркон» предлагает наиболее востребованные датчики, задатчики, регистраторы, сенсоры и преобразователи давления с высокой точностью. Также здесь можно приобрести цифровые манометры.

Все это — продукция швейцарской компании KELLER. Такое оборудование высокой точностью, стабильностью, надежностью электрических разъемов и технологических присоединений. Для подбора подходящего измерительного устройства в соответствии с требованиями технологического процесса и оборудования достаточно оставить онлайн-заявку или заказать обратный звонок.

Источник

Разновидности датчиков давления

Эксплуатация многих промышленных и бытовых приборов нуждается в контроле состояния находящейся внутри них рабочей среды. Этой средой могут быть жидкие (вода, моторное или компрессорное масло, химические продукты) либо газообразные вещества (воздух, водяной пар, природный газ, кислород и иные технические среды). Чтобы устройство исполняло свои функции, оно должно как-то измерять рабочие параметры и реагировать на них заданным образом. Для этого предназначены датчики контроля давления и температуры.

Что такое датчик давления

Датчиком давления называют контрольное оборудование, отвечающее непосредственно за измерение указанного показателя.

Области его применения бывают разнообразными:

  • нефтедобывающая, газодобывающая, перерабатывающая отрасль;
  • химическая промышленность;
  • энергетика;
  • пищевое производство;
  • множество других направлений.

В быту самый очевидный пример — это сенсоры давления для насосной станции в системе автономного водоснабжения жилого дома (дачи, коттеджа).

Схематическое изображение, где находится датчик давления в водопроводе:

Схематическое изображение

На схеме можно найти два измерителя, управляющие включением основного и дополнительного насосов. Они обеспечивают равномерную подачу воды независимо от ее потребления конечными пользователями.

Иногда такие устройства называют манометрами. Это не совсем верно, поскольку манометр — это готовый прибор, визуально показывающий величину давления в удобном для человеческого восприятия виде. Датчик же лишь элемент системы измерения, непосредственно воспринимающий физическую величину и передающий измерительный сигнал для дальнейшей обработки.

Устройство и типы сенсоров

Принцип работы датчиков давления основан на фиксации изменения состояния среды чувствительным элементом (приемником). Электронный каскад вторичной обработки преобразует выходной сигнал до принятых стандартных параметров.

По типу чувствительного элемента существует несколько решений.

Емкостные

Данный вариант использует эффект изменения электрической емкости элемента, в котором гибкая мембрана является одной из обкладок конденсатора совместно с неподвижным корпусом. Преимущества в прямом измерении электрических характеристик без промежуточных преобразований; защищенности сенсора от перегрузок и импульсного удара; стабильности показаний. Именно такие датчики давления чаще применяют в промышленном оборудовании. Например, в компрессорах, воздушных и гидравлических насосах, диагностической аппаратуре.

Особый интерес представляет возможность изготовить именно такой датчик давления своими руками. Ведь из всех прочих разновидностей только емкостные сенсоры не требуют для производства точной механики или особого оборудования. Две токопроводящие пластины несложно соединить через прокладку из упругого диэлектрика, а настраивать самодельный датчик давления можно, используя в качестве эталона надежный проверенный манометр.

формула

Индуктивные

Регистрируют токи в катушках с переменным полем, одна из которых располагается на упругой мембране. Небольшое перемещение магнита относительно воздушного зазора, приводит к сильному изменению индуктивности. Благодаря этому достигают высокой чувствительности сенсора.

Электронные

Кроме перечисленных, электронный датчик давления воздуха может быть реализован и на других физических принципах: изменении теплопроводности, ионизации газа. Такие сенсоры требуют точной настройки и используются в сложной аппаратуре и научных приборах. Их достоинство в способности измерять сверхнизкие давления, включая глубокий вакуум.

Тензометрические

Используется изменение электрического сопротивления при деформации тензорезистора, который расположен на упругом элементе. Сам тензорезистор изготовлен в виде тонких проводников на слюдяной или бумажной подложке площадью 2-10 квадратных мм.

Тензометрический датчик

По-другому этот тип сенсоров называется резистивным.

Механические

Группа устройств, в которых давление внутри системы приводит к механическому движению частей сенсора относительно неподвижного основания. Это перемещение регистрируется прибором.

таблица

Достоинством измерителей данной группы служит их очень высокая чувствительность в некоторых диапазонах, где другие конструкции недостаточно эффективны. Так датчик низкого давления в вакуумной системе должен реагировать на изменения порядка 0.01 Мпа. Этого можно добиться, применяя чувствительную мембрану. Другой тип механического измерителя — трубка Бурдона. Используется в приборах, в которых нет электроники, непосредственно воздействуя на стрелку. По этому принципу действуют механические манометры, а также глубиномеры (включая наручные для водолазов).

глубиномер

Похожий принцип реализован в знакомых многим автомобильных указателях моторного масла. Упругий элемент реагирует на сжатие, через толкатель перемещая подвижный контакт по обмотке реостата. Электрическое сопротивление изменяется, что и регистрирует прибор.

Читайте также:  Какую ягоду можно есть при пониженном давлении

Различия по использованию

По характеру измеряемого параметра различают следующие разновидности датчиков:

  • абсолютного давления;
  • избыточного давления;
  • дифференциальные.

Измерение давления чаще всего требуется для задания общих режимов работы оборудования: включения или выключения подающих насосов, системы подогрева и множества других управляемых автоматикой процессов. Простые по конструкции устройства прошлых лет измеряли перепад показателя по отношению к атмосферному, что не всегда удовлетворяло требованиям точности. Это связано с тем, что величина, с которой атмосфера давит на поверхность, может ощутимо меняться (в истории зафиксированы измерения от 641 до 816 мм ртутного столба).

Датчик абсолютного давления

Чтобы избежать ошибок из-за влияния погоды, более современные приборы способны отсекать влияние атмосферы. Они регистрируют измеряемую величину по отношению к глубокому вакууму. Такой сенсор называют абсолютным. Полученные от него показания чаще всего применяют для последующей цифровой обработки, чтобы расчетным путем привести характеристику давления к стандартным условиям. Это необходимо для правильной фиксации расхода тепловой энергии или газа в системах учета.

Датчик абсолютного давления

Датчик избыточного давления

Более простые в устройстве датчики избыточного давления учитывают суммарный показатель абсолютного и атмосферного. Без них не обойтись в коммунальном хозяйстве, в производственных или коммерческих устройствах, регистрирующих расход жидкости или газа. Другая область применения простых и надежных измерителей избыточного давления — устройства аварийной сигнализации о превышении допустимого уровня.

Датчик избыточного давления

Дифференциальный датчик

Датчик дифференциального типа определяет разницу давлений в двух раздельных полостях. Обычно такие приборы установлены в приборе, который постоянно контролирует расход вещества, протекающего по трубе, без использования вращающихся деталей. Его принцип действия основан на эффекте увеличения давления потока перед сужением диаметра и уменьшения после него. Чем такая разница выше, тем больше и протекающий по трубе поток.

Одна из возможных схем подключения этих устройств приведена на рисунке.

схемы применения

Диапазон измеряемой величины

Поскольку интервал показателя давления весьма широк, то инженерам требуются сенсоры, способные качественно измерять параметры в интересующем диапазоне. Изготовить прибор, одинаково хорошо и с удовлетворительной чувствительностью применимый как в глубоком вакууме, так и на промышленном компрессоре высокого уровня сжатия, на практике невозможно. Поэтому существуют отдельные датчики: вакуумные, низкого и высокого давления. В числовом выражении:

  • вакуумные датчики — для измерения низкого (1 мм. рт. ст.) или высокого (105 мм. рт. ст.) вакуума;
  • датчики низкого давления — от атмосферного до величин порядка 10 Па (встречается также другое название: форвакуумные);
  • датчики высокого давления — измеряют параметр выше 1 атм., также делятся на диапазоны по возрастанию компрессии.

Датчики низкого давления широко применяют в научном и лабораторном оборудовании, в медицине, в промышленности, производящей электронные компоненты и сверхчистые вещества.

По типу контролируемой среды

Потребность узнать степень сжатия или разрежения рабочей среды может возникнуть для самых разных веществ или агрегатных состояний. Чтобы обеспечить долгий срок службы и достаточную точность показаний, регистрирующие приборы также делают с учетом условий, в которых им предстоит работать.

Обычно это:

  • датчики давления воздуха — замеряют показатель сжатия газообразной среды в широком интервале величин;
  • топливные — устанавливают в системе питания двигателей, например, в топливной рампе инжекторного мотора с целью оптимизировать состав и количество горючей смеси в цилиндрах;
  • водяные — для трубопроводов и магистралей в коммунальном хозяйстве, для установки на насосной станции;
  • для агрессивных сред — в защищенном исполнении используют в химическом производстве, при перекачке нефти и газа.

Проверка и настройка

Как проверить датчик давления, если возникли подозрения в его работоспособности? Проверка разделяется на два этапа. Сперва нужно прозвонить электрическую цепь измерителя, чтобы убедиться в отсутствии обрыва или короткого замыкания. Методика проверки мультиметром аналогична работе с другими электроприборами.

Если такая диагностика не выявила проблемы, то следующий шаг — проконтролировать регулировки сенсора на соответствие реальной величине давления. Для этого не обойтись без эталона, в показаниях которого нет сомнений. Для этого выполняют подключение датчика давления к испытательной емкости, оборудованной прошедшим метрологическую поверку манометром. Поскольку настраивать сам сенсор обычно невозможно, регулируют воспринимающий его сигнал прибор так, чтобы его показания не расходились с эталоном.

Рассмотрим несколько примеров тестирования устройств, с которыми многие сталкиваются в жизни.

Регулировка реле насосной станции

Для примера рассмотрим, как настроить нормальную работу устройства, включающего и выключающего насос на установке автономного водоснабжения. Его схема содержит датчик давления и две пружины с регулировочными гайками, воздействующие на электрический контакт. Они находятся под защитной пластмассовой крышкой реле, закрепленного возле двигателя насоса.

реле насосной станции

Изменяя затяжку пружин вращением гаек, наблюдают за показанием штатного манометра и добиваются требуемой величины сжатия воздуха в гидроаккумуляторе системы по нижнему и верхнему пределам.

Регулировка реле насосной станции

Автомобильный датчик абсолютного давления

Этот сенсор находится на впускном коллекторе двигателей, оборудованных впрыском топлива. Он известен также под названием MAP (Manifold Absolute Pressure) или русской аббревиатурой ДАД. Его задача — направлять в электронный блок управления двигателем сигнал о степени сжатия воздуха на впуске, что необходимо учитывать для оптимизации состава топливной смеси. При отказе ДАД форсунки впрыскивают в цилиндры больше бензина, чем нужно двигателю для оптимальной работы, отчего вырастает его расход, падает мощность, обороты становятся нестабильными.

Тестирование выполняется подключением датчика давления к мультиметру и замером электрического сопротивления в разных режимах. Роль эталонного прибора здесь играет бортовой компьютер автомобиля, в котором хранятся стандартные параметры. При отклонении от них деталь признается негодной и выбраковывается, поскольку возможности ее регулировок не предусмотрены.

Автомобильный датчик абсолютного давления

Видео по теме

Источник