Какого давление в вакууме
Содержание статьи
Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования
Термин «вакуум», как физическое явление — среда, в которой давление газа ниже атмосферного давления.
Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м2). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.
Уровни вакуума
В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:
- Низкий вакуум (НВ): от 105 до 102 Па,
- Средний вакуум (СВ): от 102 до 10-1 Па,
- Высокий вакуум (ВВ): от 10-1 до 10-5 Па,
- Сверхвысокий вакуум (СВВ): от 10-5 до 10-9 Па,
- Черезвычайно высокий вакуум (ЧВВ): <10-9 Па.
Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.
— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.
Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.
— Промышленный вакуум: термин «промышленный вакуум» соотвествует уровню вакуума от -20 до -99 кПа. Данный диапазон используется в большинстве применений. Индустриальный вакуум получают с помощью ротационных, жидкостно-кольцевых,поршневых насосов и лопастных вакуумных генераторов по принципу Вентури. Область применения промышленного вакуума включает в себя захват присосками, термоформование, вакуумный зажим, вакуумная упаковка и др.
— Технический вакуум: соответствует уровню вакуума от -99 кПа. Такой уровень вакуума получают при помощи двухуровневых ротационных насосов, эксцентриковых роторных насосов, вакуумных насосов Рутса, турбомолекулярных насосов, диффузионных насосов, криогенных насосов и т.д.
Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.
Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.
Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.
Вакуумные присоски незаменимый инструмент для захвата, подъёма и перемещения предметов, листов и различных объектов, которые трудно перемещать обычными системами, из-за их хрупкости или риска деформации.
При правильном применении присоски обеспечивают удобство, экономичность и безопасность работы, что является фундаментальным принципом для идеальной реализации проектов автоматизации на производстве.
Продолжительные исследования и внимание к требованиям наших клиентов, позволили нам производить присоски выдерживающие высокие и низкие температуры, абразивный износ, электростатические разряды, агрессивные среды, а так же не оставляют пятен на поверхности переносимых предметов. Помимо этого, присоски соответствуют стандартам безопасности EEC и пищевым стандартам FDA, BGA, TSCA.
Все присоски изготавливаются из высококачественных компонентов методом вакуумного формования и подвергаются антикоррозионной обработке для долгого срока службы. Независимо от конфигурации, все присоски имеют свою маркировку.
Система множественного захвата Октопус.
Далее: Принцип действия вакуумных присосок.
Источник
Что такое вакуум?
Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум. Попытаемся разобраться, что же это такое. По определению, вакуум — это пространство, свободное от вещества (от латинского слова «vacuus» — пустой). Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д. Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ. Рассмотрим на примере, что такое вакуум и как его измеряют. На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум. Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом. Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом. Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера. «откачаем» половину — получим 0,5 атм, оставим один — получим 0,1 атм. Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер. «Теоретически» — т.к. выловить все молекулы воздуха из сосуда практически невозможно. По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют «остаточным давлением», то есть давление, которое осталось в сосуде после откачки из него газов. Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля. В обычной жизни редко когда требуется вакуум глубже 0,5 — 10 Па (0,00005-0,0001 атм). Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта: 1. За единицу принимается атмосферное давление. Всё, что ниже единицы — вакуум. То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0). 2. За ноль принимается атмосферное давление. То есть вакуум — все отрицательные числа меньше 0 и до -1. То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1). Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах. На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум: Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления. К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д. И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.) На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы). Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм. Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО «Насосы Ампика», у нас в офисе: включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума. Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100. После такой проверки, всегда говорят одно и тоже — вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму). В чем же причина такой реакции? А как всегда — в отсутствии знаний законов физики и что такое давление вообще. Немного ликбеза: давление «P» — это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S. По-простому — это сила, распределённая по площади поверхности. Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S). Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ — 25 мм (площадь поверхности 78,5 мм2). Диаметр всасывающего отверстия у вакуумного насоса VE-2100 — 6 мм (площадь поверхности 18,8 мм2). То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении). Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс. Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе). Как посчитать силу прижима какой-либо детали к поверхности? Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще. Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75. Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН. Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм. 1 атмосфера равна 1 кг/см2. Площадь поверхности детали — 100 см2 (10см х10 см). То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг. Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг. Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п. Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п. Теперь пару слов о механических вакуумметрах. Эти устройства показывают остаточное давление в пределах 0,05…1 атм. То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64. Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух. Встаёт вопрос: каким вакуумным насосом пользоваться — одноступенчатым или двухступенчатым? Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше. Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее. Но так ли это на самом деле? 1 атм = 100000 Па = 1 кг/см2. Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень — посчитает сам). То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает. Расчет времени вакуумирования емкости Как рассчитать за какое время вакуумный насос откачает вакуумную камеру? В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем. Ниже приведена формула для вычисления этого параметра. t = (V/S)*ln(p1/p2)*F, где t — время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2 V — объем откачиваемой емкости, м3 S — быстрота действия вакуумного насоса, м3/час p1 — начальное давление в откачиваемой емкости, мбар p2 — конечное давление в откачиваемой емкости, мбар ln — натуральный логарифм F — поправочный коэффициент, зависит от конечного давления в емкости p2: — p2 от 1000 до 250 мбар F=1 — p2 от 250 до 100 мбар F=1,5 — p2 от 100 до 50 мбар F=1,75 — p2 от 50 до 20 мбар F=2 — p2 от 20 до 5 мбар F=2,5 — p2 от 5 до 1 мбар F=3 В двух словах, это всё. Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива… |
Источник
Абсолютный вакуум и атмосферное давление
Согласно определению в физике, концепция «вакуума» предполагает отсутствие какого-либо вещества и элементов материи в определенном пространстве, в этом случае говорят об абсолютном вакууме. Частичный же вакуум наблюдается тогда, когда плотность находящегося вещества в данном месте пространства является низкой. Рассмотрим подробнее этот вопрос в статье.
Вакуум и давление
В определении концепции «абсолютный вакуум» речь идет о плотности вещества. Из физики же известно, что если рассматривается газообразная материя, то плотность вещества является прямо пропорциональной величиной давлению. В свою очередь, когда говорят о частичном вакууме, то подразумевают, что плотность частиц материи в данном пространстве меньше, чем таковая для воздуха при нормальном атмосферном давлении. Именно поэтому вопрос вакуума — это вопрос давления в рассматриваемой системе.
В физике абсолютное давление — это величина, равная отношению силы (измеряется в ньютонах (Н)), которая перпендикулярно приложена к некоторой поверхности, к площади этой поверхности (измеряется в квадратных метрах), то есть P = F/S, где P — давление, F — сила, S — площадь поверхности. Единицей измерения давления является паскаль (Па), получается, что 1 [Па] = 1 [Н]/ 1 [м2].
Частичный вакуум
Экспериментально установлено, что при температуре 20 °C на поверхности Земли на уровне моря атмосферное давление составляет 101 325 Па. Это давление получило название 1-й атмосферы (атм.). Приблизительно можно сказать, что давление в 1 атм. равняется 0,1 МПа. Отвечая на вопрос о том, сколько атмосфер в 1 паскале, составляем соответствующую пропорцию и получаем, что 1 Па = 10-5 атм. Частичный вакуум соответствует любому давлению в рассматриваемом пространстве, которое меньше 1 атм.
Если переводить указанные цифры с языка давлений на язык количества частиц, тогда следует сказать, что при 1 атм. в 1 м3 воздуха содержится приблизительно 1025 молекул. Любое уменьшение названной концентрации молекул приводит к образованию частичного вакуума.
Измерение вакуума
Самым распространенным прибором для измерения небольшого вакуума является обычный барометр, который можно использовать только для случаев, когда давление газа составляет несколько десятков процентов от атмосферного.
Для измерения более высоких значений вакуума используют электрическую схему с мостом Уитстона. Идея использования заключается в измерении сопротивления чувствительного элемента, которое зависит от окружающей его концентрации молекул в газе. Чем больше эта концентрация, тем больше молекул ударяются о чувствительный элемент, и тем больше тепла он им передает, это приводит к уменьшению температуры элемента, которая влияет на его электрическое сопротивление. Этим прибором удается измерять вакуум с давлениями в 0,001 атм.
Историческая справка
Интересно отметить, что понятие «абсолютный вакуум» полностью отвергалось известными древнегреческими философами, например Аристотелем. Кроме того, о существовании атмосферного давления не было известно до начала XVII века. Только с приходом Нового времени начали проводиться эксперименты с трубками, наполненными водой и ртутью, которые показали, что земная атмосфера оказывает давление на все окружающие тела. В частности, в 1648 году Блез Паскаль смог измерить с помощью ртутного барометра давление на высоте 1000 метров над уровнем моря. Измеренное значение оказалось намного меньшим, чем на уровне моря, тем самым ученый доказал существование атмосферного давления.
Впервые эксперимент, который явно продемонстрировал силу атмосферного давления, а также подчеркнул концепцию вакуума, был проведен в Германии в 1654 году, в настоящее время он известен под названием «эксперимент с магдебургскими сферами». В 1654 году немецкий физик Отто фон Герике смог плотно соединить две металлические полусферы диаметром всего 30 см, а затем выкачал из полученной конструкции воздух, создав тем самым частичный вакуум. История повествует, что две упряжки по 8 лошадей в каждой, которые тянули в противоположные стороны, не смогли разъединить эти сферы.
Абсолютный вакуум: существует ли он?
Иными словами, существует ли место в пространстве, которое бы не содержало никакой материи. Современные технологии позволяют создать вакуум 10-10 Па и даже меньше, однако это абсолютное давление не означает, что в рассматриваемой системе не остается частиц материи.
Обратимся теперь к самому пустому пространству во Вселенной — к открытому космосу. Какое давление в вакууме космоса? Давление в космическом пространстве вокруг Земли составляет 10-8 Па, при этом давлении существует около 2 млн молекул в объеме 1 см3. Если говорить о межгалактическом пространстве, то по оценкам ученых даже в нем существует как минимум 1 атом в объеме 1 см3. Более того, наша Вселенная пронизана электромагнитным излучением, носителями которого являются фотоны. Электромагнитное излучение — это энергия, которую можно перевести в соответствующую массу по знаменитой формуле Эйнштейна (E = m*c2), то есть энергия, наряду с веществом, является состояние материи. Отсюда следует вывод, что абсолютного вакуума в известной нам Вселенной не существует.
Источник
КАК ВЫБРАТЬ ВАКУУМНЫЙ НАСОС. Часть 1: «Вакуум».
Содержание статьи:
- Введение.
- Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».
- Градация ВАКУУМА по глубине.
- Основные законы ФИЗИКИ ГАЗА и уравнение состояния идеального газа.
- Конструктивные типы вакуумных насосов.
1. Введение.
При выборе вакуумного насоса (или компрессора) и оценке его пригодности для использования в той или иной технологии оперируют двумя главными характеристиками:
- ДАВЛЕНИЕ
- ПРОИЗВОДИТЕЛЬНОСТЬ
Вакуумный насос или компрессор, который в поиске у потенциального пользователя, должен, прежде всего, обеспечить требуемый уровень давления. Затем ставится задача получить это давление за определенный промежуток времени. Быстрота получения заданного значения давления определяется производительностью (pumping speed) вакуумного насоса. При этом газовые компрессоры нагнетают газы и формируют давления выше атмосферного. Вакуумные насосы генерируют давления ниже атмосферного, т.е. создают разрежение.
В этой статье речь пойдет о низком давлении, т.е. о ВАКУУМЕ, как об основной технической характеристике всех вакуумных насосов. Создание или генерирование устройством вакуума — это динамический процесс понижения атмосферного давления в объеме и во времени. При поисках и выборе вакуумного насоса по уровню вакуума обычно говорят о двух характеристиках вакуумного насоса, связанных с давлением:
- предельное остаточное давление (или предельный вакуум, ultimate pressure)
- рабочее давление (или рабочий вакуум, working pressure)
Предельное остаточное давление — это самое хорошее (высокое) значение вакуума, которое позволяет достигнуть конструкция этого вакуумного насоса. Важно понимать, что когда вакуумный насос достигает этого предельного значения вакуума, производительность откачки газов становится равной нулю, т.е. откачка прекращается, и в дальнейшем при работе насоса это значение предельного давления будет поддерживаться как некое достигнутое равновесное состояние системы «насос-откачиваемый объём».
Как правило, значение предельного остаточного давления достигается лишь при работе вакуумного насоса в режиме «сам на себя», т.е. при заглушенном входном патрубке. Это объясняется довольно просто: при подключении к насосу технологических объемов (емкости, трубопроводы, стыки, камеры и др.) всегда существуют течи (негерметичности) или явления газовой десорбции, которые не позволяют достичь в откачиваемом объеме максимальное значение вакуума, который способен создать сам насос.
Рабочее давление — это заданное значение вакуума, которое требуется обеспечить и поддерживать вакуумным насосом в той или иной технологии или техпроцессе.
При выборе вакуумного насоса его предельное остаточное давление должно быть немного лучше чем рабочее. Это как бы обеспечивает некий «запас прочности», т.е. гарантию того, что требуемое в техпроцессе давление будет достигнуто с помощью именно этого вакуумного насоса.
2. Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».
Давление газов в замкнутом объёме — это суммарное усилие, оказываемое ударами (толчками) постоянно движущихся молекул газов в стенки объёма, в результате их постоянного броуновского движения и сталкивания друг с другом и с твёрдыми стенками сосуда.
Основная единица измерения давления в системе СИ — это «Па» (Паскаль):
1 Па = 1 Н / м2 = 0,01 мбар [ 1 ]
Другие общепринятые единицы измерения давления и их соотношения приведены в Таблице 1:
Таблица 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Единица измерения давления | бар | мбар | мм. рт. ст. | м вод. ст. | Па | кПа | МПа | атм. | ат. | кгс/см2 | psi |
Бар (bar) | 1 | 1000 | 750 | 10,2 | 100 000 | 100 | 0,1 | 0,9869 | 1,02 | 1,02 | 14,5 |
Атмосферное давление — это давление, которое оказывает масса воздушного столба, как смесь газов, простирающихся на высоту более 1000 км от уровня поверхности земли и океана. При этом надо понимать, что чем выше от поверхности моря находится точка измерения этого атмосферного давления, тем атмосфера менее сконцентрирована, тем смесь газов реже (как бы их масса разбавляется в огромном увеличивающемся с высотой объёме) и, как следствие, давление этой смеси газов падает с подъёмом на высоту (см. Рис. 2). Почему? Просто так издавна утроена планета Земля, вокруг которой существует атмосфера, как газовая аура вокруг шара. Благодаря этой атмосферной ауре живут организмы и проистекают самые жизненные реакции веществ, постоянно потребляющие кислород, и растения, которые этот кислород постоянно вырабатывают и восстанавливают т.н. кислородный атмосферный баланс. Самые яркие примеры — это ветер, горение (как процесс окисления) и дыхание живых организмов, животных, людей.
Кривая изменения атмосферного давления до высоты 12 км над уровнем моря показана на Рис. 3.
Земная атмосфера. Принято считать, что это смесь 14 основных «земных» газов (см. Рис. 1), из которых три составляют львиную долю, в целом более 99% (азот — более 78%, кислород — более 20%, паров воды может быть более 1%).
Земная атмосфера делится на зоны по параметрам давления и температуры: тропосферу, стратосферу, мезосферу и термосферу (см. Рис. 4).
Вакуум — это всякое давление, величина которого ниже атмосферного. Нормальным атмосферным давлением в земных условиях принято считать абсолютное давление атмосферного столба на уровне поверхности мирового океана (моря). Это значение составляет 1013 мбар абс. «абс.» — здесь имеется в виду абсолютное давление, которое равно нулю в том случае, когда в объеме нет ни одной молекулы газов. Т.к. на поверхности земли, в её недрах и в атмосфере всегда есть газообразные вещества и пары жидких веществ, то абсолютный вакуум недостижим в земных условиях. Как бы быстро и хорошо не откачивались объемы современными вакуумными насосами, какими бы герметичными они бы ни были, в микроскопических шероховатостях стенок объемов всегда есть определенное количество молекул газов, которые невозможно удалить из этих микрорельефов. Кроме того, при давлении на стенки сосудов извне всегда есть проскакивающие, как бы просачивающиеся сквозь сито, внутрь молекулы газов, даже сквозь твёрдые кристаллические решетки металлов. В закрытых объёмах всегда есть явления газовой десорбции, т.е. выделения молекул газов со стенок объема вовнутрь, всегда есть микропоры и микротрещины, через которые газы проникают в зоны низкого давления. Всё это не позволяет получить абсолютный вакуум в земных условиях.
![]() | Факты: Альпы — это горный массив, пересекающий границы шести стран. В самом их сердце возвышается знаменитая гора Монблан, находящаяся на границе Франции и Италии. Сами Альпы представляют собой горную гряду, которая тянется по Европе почти 1200 км, в самом широком месте между итальянской Вероной и немецким Гармиш-Партенкирхеном имеет ширину около 260 км, занимая общую площадь в 190 тыс. кв. км. Альпы полностью или частично находятся на территории 8 стран. По доле общей площади государства, приходящейся на Альпы, эти страны располагаются следующим образом: Лихтенштейн (100%), Монако (100%), Австрия (65%), Швейцария (60%), Словения (40%), Италия (17%), Франция (7%), Германия (3%). |
![]() | Факты: Эверест, она же Джомолунгма — высочайшая вершина в мире, высота этой горы составляет 8848 метров. Эверест расположен в Гималайских горах, которые протягиваются по Тибетскому нагорью и Индо-Гангской равнине на территории нескольких стран: Непала, Индии, Бутана, Китая. Вершина Эвереста расположена на территории Китая, но сама гора находится на китайско-непальской границе. |
![]() | Факты: В гражданской и военной авиации очень важно поддерживать атмосферное давление внутри самолета, т.к. при поднятии его на любую высоту от поверхности Земли, давление за бортом падает, а это влечет за собой отток воздуха из салона самолета во внешнюю среду. Чтобы этого не происходило требуется выполнение двух основных условий нормального полета с лётчиком или пассажирами внутри: — корпус самолета должен быть герметичен (max отсутствие утечек воздуха наружу); — в корпус необходимо подавать воздух компрессорами под избыточным давлением, чтобы компенсировать всегда существующие утечки и микро утеки воздуха наружу. Если в военных самолётах можно решить проблему утечек индивидуальными масками пилотов, то в гражданских самолётах, где много пассажиров, создают специальные автоматизированные системы поддержания атмосферного давления. |
Рис. 3. График снижения атмосферного давления с высотой над уровнем моря (от 0 до 12) км.
Рис. 4. Диаграмма распределения температуры воздуха в 4-х слоях атмосферного столба:
тропосфера (до 11 км), стратосфера (от 11 до 47 км), мезосфера (от 47 до 80 км), термосфера (свыше 80 км).
3. Градация вакуума по глубине (технические уровни вакуума).
Существует несколько методик по разбивке всей возможной шкалы низкого давления на различные интервалы (отрезки). Самые распространенные — это академическая градация и индустриальная градация.
Академический основан на оценке плотности (степени разрежения) газов по характеру движения их молекул в объёмах путем соизмерения длин пробега молекул между их столкновениями друг с другом и со стенками сосудов, т.е. соизмерения т.н. длин свободного пробега. Чем больше средняя длина свободного пробега молекулы, тем лучше вакуум. Так, например, если молекула газа в объёме успевает пролететь от стенки к стенке не соударяясь с другими молекулами, то это показатель того, что в таком объёме достигнут сверхвысокий вакуум.
Так как мы специализируемся на поставках оборудования для промышленных применений, то рассмотрим в этой статье индустриальный подход к разбивке вакуума на 4 класса (интервала). Этот метод соответствует европейскому стандарту DIN 28400. Классы вакуума приведены в Таблице 2.
Таблица 2 | |
---|---|
Технические уровни вакуума (classes) | Диапазон давлений (pressure range) |
ФОРВАКУУМ (rough vacuum) | (от 1000 до 1) мбар абс. |
СРЕДНИЙ ВАКУУМ (fine vacuum) | (от 1 до 10-3) мбар абс. |
ВЫСОКИЙ ВАКУУМ (high vacuum) | (от 10-3 до 10-7) мбар абс. |
СВЕРХВЫСОКИЙ ВАКУУМ (ultrahigh vacuum) | (10-7 и ниже) мбар абс. |
4. Базовые законы ФИЗИКИ ГАЗА и уравнение состояния идеального газа.
![]() | Закон Бойля-Мариотта.Закон Бойля-Мариотта был установлен английским физиком Робертом Бойлем в 1662 г. и независимо от него французским ученым Эдмом Мариоттом в 1679 г. и звучит так: Для данной массы газа при неизменной температуре произведение его давления p на объем V есть величина постоянная: pV = const [ 2 ] Этот закон также называется ЗАКОНОМ ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА. Как пример: при постепенном росте объёма определенного количества газа, чтобы сохранить его температуру неизменной, давление газа должно также постепенно снижаться. | |||
![]() | Закон Гей-Люссака.Закон, связывающий объем газа V и его температуру T, был установлен французским ученым Жозефом Гей-Люссаком в 1802 г. Для данной массы газа при постоянном давлении отношение объёма газа к его температуре есть величина постоянная. VT = const [ 3 ] Этот закон еще называют ЗАКОНОМ ИЗОБАРНОГО ПРОЦЕССА. Как пример: при постепенном нагреве определенного количества газа, чтобы сохранить давление неизменным, газ должен также постепенно расширяться. | |||
![]() | Закон Шарля.Закон, связывающий давление газа p и его температуру T, установлен Жаком Шарлем в 1787 году. Для данной массы газа в закрытом герметичном объёме давление газа всегда прямо пропорционально его температуре. pT = const [ 4 ] Этот закон еще называют ЗАКОНОМ ИЗОХОРОГО ПРОЦЕССА. Как пример: при постепенном нагреве определенного количества газа в закрытом объёме, также постепенно будет расти и его давление. | |||
Уравнение состояния идеального газа.Уравнение, позволяющее обобщить все три основных газовых закона термодинамики называется уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Оно дает взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа: давления p, объема V, температуры T,- и имеет вид: [ 5 ]
или при записи в другом виде: [ 6 ] Где: p — давление газа, Па (Н/м2) V — объём газа, м3 m — масса газа, кг μ — молярная масса газа R = 8,31 Дж/моль ∗ К — универсальная газовая постоянная, T — температура газа, °К (градусы абсолютной шкалы Кельвина). Под идеальным газом понимается газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосудов. Важно понимать, что все газовые законы работают для фиксированной массы (количества) газа. Законы эти хорошо работают для режимов вакуума и не приемлемы при очень высоких давлениях и температурах. |
5. Конструктивные типы вакуумных насосов.
Если говорить об уровне вакуума и его использовании в промышленных и исследовательских целях, то:
— в массовой мировой промышленности очень широко применяют форвакуум и средний вакуум;
— в более редких высоких технологиях используют форвакуум, средний и высокий вакуум;
— в лабораториях и исследованиях можно встретить все классы вакуума, в т.ч. и сверхвысокий.
Для получения всех классов в промышленности применяют различные конструкции вакуумных насосов, основные типы которых приведены в Таблице 3.
Таблица 3 | ||
---|---|---|
Тип насоса | Конструктивный вид(схема) | Диапазон рабочих давлений |
Мембранный вакуумный насос: — 1 ступень откачки — 2 ступени откачки — 3 ступени откачки — 4 ступени откачки | ![]() | Соответственно работа в диапазоне: — от 100 мбар абс. до атмосферного давления — от 10 мбар абс. до атмосферного давления — от 2 мбар абс. до атмосферного давления — от 0,5 мбар абс. до атмосферного давления |
Вихревая воздуходувка | ![]() | от 600 мбар абс. до атмосферного давления |
Двухроторнвя воздуходувка | ![]() | от 400 мбар абс. до атмосферного давления |
Сухой пластинчато-роторный вакуумный насос | ![]() | от 150 мбар абс. до атмосферного давления |
Водокольцевой вакуумный насос | ![]() | от 33 мбар абс. до атмосферного давления |
Сухой кулачковый вакуумный насос | ![]() | от 20 мбар абс. до атмосферного давления |
Пластинчато-роторный вакуумный насос с рецикркуляционной смазкой | ![]() | от 0,5 мбар абс. до атмосферного давления |
Сухой спиральный вакуумный насос | ![]() | от 0,01 мбар абс. до атмосферного давления |
Сухой винтовой вакуумный насос | ![]() | от 0,01 мбар абс. до атмосферного давления |
2-х ступенчатый пластинчато-роторный вакуумный насос с масляной ванной | ![]() | от 0,0005 мбар абс. до атмосферного давления |
Сухой вакуумный насос Рутса (бустерный) | ![]() | от 0,001 до 25 мбар абс. |
Высоковакуумные насосы: — турбомолекулярные — диффузионные паромасляные — криогенные — магниторазрядные — сорбционные, ионные и гетероионные | ![]() | от 10-11 до 5 мбар абс. |
В этом разделе основной акцент сделан на насосы для получения форвакуума, т.к. это самая востребованная ниша рынка вакуумного оборудования, и не только в России и странах СНГ, а и во всем мире.
Следует также знать, что высоковакуумные насосы не могут работать без вакуумных насосов фор- и среднего вакуума, т.к. они стартуют в работу только с пониженных давлений (как правило, со среднего вакуума) и выхлоп у них должен происходить в зону вакуума, иначе высокий и сверхвысокий вакуум недостижим. Т.о. форвакуумные насосы и насосы среднего вакуума востребованы во всех отраслях промышленности, высокотехнологичных сферах и в научных исследованиях.