Какого давление в плевральной полости
Содержание статьи
вижение воздуха в легких. Плевральное и альвеолярное давление
Движение воздуха в легких. Плевральное и альвеолярное давление
а) Движение воздуха в легкие и из них и давления, вызывающие движение воздуха. Легкие являются эластической структурой, которая при отсутствии силы, поддерживающей ее в растянутом состоянии, спадается как воздушный шар и выдавливает весь содержащийся в ней воздух через трахею. При этом не существует никаких соединяющих легкие и стенки грудной клетки структур, кроме тех, которые прикрепляют их ворота к средостению. Таким образом, легкие «плавают» в грудной полости, окруженные тонким слоем плевральной жидкости, которая облегчает их движение в полости.
Постоянное всасывание излишка жидкости в лимфатические каналы создает слабое присасывание висцеральной поверхности плеврального листка легких к париетальному листку плевры стенки грудной полости, поэтому легкие как бы прилипают к грудной стенке и при ее расширении и сужении могут свободно скользить по ее внутренней поверхности.
б) Плевральное давление и его изменения во время дыхания. Плевральное давление — это давление жидкости в узкой щели между легочным и париетальным листками плевры. Ранее было сказано, что в норме существует слабое присасывание листков плевры друг к другу, т.е. давление является слабо отрицательным. В начале вдоха нормальное плевральное давление составляет около -5 см вод. ст., при таком давлении легкие остаются открытыми в покое. При нормальном вдохе расширение грудной клетки тянет за собой и легкие, и развивается несколько большее отрицательное давление — около -7,5 см вод. ст.
Колебания величин легочного объема, альвеолярного давления, плеврального давления и транспульмонального давления во время нормального дыхания
На рисунке выше показаны эти соотношения между внутриплевральным давлением и изменениями легочного объема. На нижней кривой видно, что при вдохе отрицательное давление внутри плевральной полости увеличивается от -5 до -7,5 см вод. ст., а на верхней кривой видно увеличение объема легких на 0,5 л. Во время выдоха события развиваются в обратном направлении.
в) Альвеолярное давление. Давление воздуха внутри альвеол называют альвеолярным давлением. При открытой гортани и отсутствии движения воздуха к легким или от них давление во всех частях дыхательных путей вплоть до альвеол одинаково и равняется атмосферному давлению, которое считается нулевым уровнем давления в дыхательных путях, т.е. равным 0 см вод. ст.
Во время вдоха воздух начинает входить в альвеолы только после того, как давление в альвеолах становится несколько ниже атмосферного давления (ниже нуля). На второй кривой (альвеолярное давление) на рисунке видно, что во время нормального вдоха альвеолярное давление снижается примерно до -1 см вод. ст. Этого небольшого отрицательного давления достаточно для того, чтобы в легкие во время спокойного вдоха за 2 сек вошло 0,5 л воздуха.
Во время выдоха происходит сдвиг давления в другую сторону: альвеолярное давление повышается примерно до +1 см вод. ст., при этом за 2-3 сек выдоха из легких выходит 0,5 л воздуха.
г) Транспульмональное давление. Обратите внимание на разницу между альвеолярным и внутриплевральным давлением на рисунке выше. Эту разницу называют транспульмоналъным давлением. Она представляет собой разницу между давлением внутри альвеол и давлением на внешней поверхности легких. Транспульмональное давление является мерой эластических сил в легких, стремящихся к уменьшению объема легких в любой фазе дыхания. Это давление называют давлением коллапса.
Видео физиология этапов дыхания, внешнего дыхания, спирометрии — профессор, д.м.н. П.Е. Умрюхин
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
— Также рекомендуем «Растяжимость легких. Характеристика растяжимости легких»
Оглавление темы «Свертывающая система. Вентиляция легких»:
1. Внутренний путь инициации свертывания. Роль ионов кальция в свертывании
2. Суммарная инициация свертывания крови. Внутрисосудистые антикоагулянты
3. Лизис кровяных сгустков — плазмин. Повышенная кровоточивость
4. Гемофилия и ее причины. Тромбоцитопения и ее причины
5. Тромбоэмболические состояния у человека. Причины тромбоэмболий
6. Гепарин в виде антикоагулянта. Кумарины
7. Оценка состояния свертывания крови. Протромбиновое время (ПТИ)
8. Легочная вентиляция. Механика легочной вентиляции
9. Движение воздуха в легких. Плевральное и альвеолярное давление
10. Растяжимость легких. Характеристика растяжимости легких
Источник
зменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.
Оглавление темы «Дыхание. Дыхательная система.»: 1. Дыхание. Дыхательная система. Функции дыхательной системы. 2. Внешнее дыхание. Биомеханика дыхания. Процесс дыхания. Биомеханика вдоха. Как люди дышат? 3. Выдох. Биомеханизм выдоха. Процесс выдоха. Как происходит выдох? 4. Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс. 5. Фазы дыхания. Объем легкого ( легких ). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких. 6. Факторы, влияющие на легочный объем в фазу вдоха. Растяжимость легких ( легочной ткани ). Гистерезис. 7. Альвеолы. Сурфактант. Поверхностное натяжение слоя жидкости в альвеолах. Закон Лапласа. 8. Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток. 9. Зависимость «поток-объем» в легких. Давление в дыхательных путях при выдохе. 10. Работа дыхательных мышц в течение дыхательного цикла. Работа дыхательных мышц при глубоком дыхании. Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.Сокращение дыхательных мышц грудной клетки и диафрагмы при вдохе вызывает увеличение объема легких, а при их расслаблении во время выдоха легкие спадаются до исходного объема. Объем легких как при вдохе, так и при выдохе изменяется пассивно, поскольку благодаря своей высокой эластичности и растяжимости легкие следуют за изменениями объема грудной полости, вызванными сокращением дыхательных мышц. Это положение иллюстрирует следующая модель пассивного увеличения объема легких (рис. 10.3). В этой модели легкие могут быть рассмотрены в качестве эластичного баллона, помещенного внутрь емкости, выполненной из ригидных стенок и гибкой диафрагмы. Пространство между эластичным баллоном и стенками емкости является герметичным. Эта модель позволяет изменять давление внутри емкости при движении вниз гибкой диафрагмы. При увеличении объема емкости, вызванном движением вниз гибкой диафрагмы, давление внутри емкости, т. е. вне баллона, становится ниже атмосферного в соответствии с законом идеального газа. Баллон раздувается, поскольку давление внутри него (атмосферное) становится выше, чем давление в емкости вокруг баллона.
В приложении к легким человека, которые полностью заполняют объем грудной полости, их поверхность и внутренняя поверхность грудной полости покрыты плевральной мембраной. Плевральная мембрана поверхности легких (висцеральная плевра) физически не соприкасается с плевральной мембраной, покрывающей грудную стенку (париетальная плевра), так как между этими мембранами имеется плевральное пространство (синоним — внутриплевральное пространство), заполненное тонким слоем жидкости — плевральной жидкости. Эта жидкость увлажняет поверхность долей легких и способствует их скольжению относительно друг друга во время раздувания легких, а также облегчает трение между париетальным и висцеральным листками плевры. Жидкость несжимаема и ее объем не увеличивается при уменьшении давления в плевральной полости. Поэтому высокоэластичные легкие в точности повторяют изменение объема грудной полости во время вдоха. Бронхи, кровеносные сосуды, нервы и лимфатические сосуды формируют корень легкого, с помощью которого легкие фиксированы в области средостения. Механические свойства этих тканей обусловливают основную степень усилия, которое должны развивать дыхательные мышцы при сокращении, чтобы вызывать увеличение объема легких. В обычных условиях эластическая тяга легких создает незначительную величину отрицательного давления в тонком слое жидкости внутриплеврального пространства относительно атмосферного давления. Отрицательное внутриплевральное давление варьирует в соответствии с фазами дыхательного цикла от -5 (выдох) до -10 см водн. ст. (вдох) ниже атмосферного давления (рис. 10.4). Отрицательное внутриплевральное давление способно вызвать уменьшение (коллапс) объема грудной полости, которому ткани грудной клетки противодействуют своей чрезвычайно ригидной структурой. Диафрагма по сравнению с грудной клеткой, является более эластичной, и ее купол поднимается вверх под влиянием градиента давления, существующего между плевральной и брюшной полостями. В состоянии, когда легкие не расширяются и не спадаются (пауза соответственно после вдоха или выдоха), в дыхательных путях отсутствует поток воздуха и давление в альвеолах равно атмосферному. В этом случае градиент между атмосферным и внутриплевральным давлением будет точно уравновешивать давление, развиваемое эластической тягой легких (см. рис. 10.4). В этих условиях величина внутриплеврального давления равна разности между давлением в дыхательных путях и давлением, развиваемым эластической тягой легких. Поэтому чем больше растянуты легкие, тем сильнее будет эластическая тяга легких и более отрицательным относительно атмосферного является величина внутриплеврального давления. Так происходит во время вдоха, когда диафрагма опускается вниз и эластическая тяга легких противодействует раздуванию легких, а величина внутриплеврального давления становится более отрицательной. При вдохе это отрицательное давление способствует продвижению воздуха по дыхательным путям в сторону альвеол, преодолевая сопротивление дыхательных путей. В результате воздух поступает из внешней среды в альвеолы.
При выдохе диафрагма расслабляется и величина внутриплеврального давления становится менее отрицательной. В этих условиях альвеолы в связи с высокой эластичностью их стенок начинают уменьшаться в размере и выталкивают воздух из легких через дыхательные пути. Сопротивление дыхательных путей потоку воздуха поддерживает положительное давление в альвеолах и препятствует их быстрому спадению. Таким образом, в спокойном состоянии при выдохе поток воздуха в дыхательных путях обусловлен только эластической тягой легких. Пневмоторакс. Если воздух входит во внутриплевральное пространство, например через раневое отверстие, в легких возникает коллапс, грудная клетка незначительно увеличивается в объеме, а диафрагма опускается вниз, как только внутриплевральное давление становится равным атмосферному давлению. Это состояние называется пневмотораксом, при котором легкие утрачивают способность следовать за изменением объема грудной полости во время дыхательных движений. Более того, во время вдоха воздух через раневое отверстие входит в грудную полость и выходит во время выдоха без изменения объема легких во время дыхательных движений, что делает невозможным газообмен между внешней средой и организмом. Видео физиология этапов дыхания, внешнего дыхания, спирометрии — профессор, д.м.н. П.Е. Умрюхин— Также рекомендуем «Фазы дыхания. Объем легкого ( легких ). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.» |
Источник
Давление в плевральной полости
физическая величина, характеризующая состояние содержимого полости плевры. Это величина, на которую давление в плевральной полости ниже атмосферного (отрицательное давление); при спокойном дыхании оно равно 4 мм рт. ст. в конце выдоха и 8 мм рт. ст. в конце вдоха. Создается силами поверхностного натяжения и эластической тягой легкого
Рис. 12.13. Изменения давления во время вдоха и выдоха
ВДОХ (инспирация) — физиологический акт наполнения легких атмосферным воздухом. Осуществляется благодаря активной деятельности дыхательного центра и дыхательной мускулатуры, увеличивающей объем грудной клетки, в результате чего снижается давление в плевральной полости и в альвеолах, что приводит к поступлению воздуха окружающей среды в трахею, бронхи и респираторные зоны легкого. Происходит без активного участия легких, так как сократительные элементы в них отсутствуют
ВЫДОХ (экспирация) — физиологический акт выведения из легкого части воздуха, принимающего участие в газообмене. Вначале выводится воздух анатомического и физиологического мертвого пространства, мало отличающийся от атмосферного воздуха, затем альвеолярный воздух, обогащенный СО2 и бедный О2 в результате газообмена. В условиях покоя процесс пассивный. Осуществляется без затраты мышечной энергии, за счет эластической тяги легкого, грудной клетки, гравитационных сил и расслабления дыхательных мышц
При форсированном дыхании глубина выдоха усиливается с помощью мышц брюшного пресса и внутренних межреберных. Мышцы брюшного пресса сдавливают брюшную полость спереди и усиливают подъем диафрагмы. Внутренние межреберные мышцы смещают ребра вниз и тем самым уменьшают поперечное сечение грудной полости, а следовательно и ее объем
Механизм вдоха и выдоха
Статические показатели внешнего дыхания (легочные объемы)
величины, характеризующие потенциальные возможности дыхания, зависящие от антропометрических данных и особенностей функциональных объемов легкого
ЛЕГОЧНЫЕ ОБЪЕМЫ | ХАРАКТЕРИСТИКА | Объем у взрослого человека, мл |
Дыхательный объем (ДО) | объем воздуха, который человек может вдохнуть (выдохнуть) при спокойном дыхании | 500-800 |
Резервный объем вдоха (РОВд) | количество воздуха, которое может быть дополнительно введено при максимальном вдохе | 1500-1800 |
Резервный объем выдоха (РОВыд) | объем воздуха, который человек может выдохнуть дополнительно после спокойного выдоха | 1500-1800 |
Остаточный объем (ОО) | объем воздуха, который остается в легких после максимального выдоха | 1000-1500 |
Жизненная емкость легких (ЖЕЛ) | Максимальный объем воздуха, который можно выдохнуть после максимального вдоха. Зависит от общей емкости легких, силы дыхательных мышц, грудной клетки и легких (ЖЕЛ)=РОвд+ДО+РОвыд | У мужчин — 3500-5000 У женщин — 3000-3500 |
Общая емкость легких (ОЕЛ) | Наибольшее количество воздуха, которое полностью заполняет легкие. Характеризует степень анатомического развития органа (ОЕЛ)= ЖЕЛ + ОО | 4500-7000 |
Функциональная остаточная емкость (ФОЕ) | Количество воздуха, остающееся в легких после спокойного выдоха (ФОЕ)= РОВыд + ОО | 2000-2500 |
Определение статических показателей дыхания производится методом спирометрии.
Спирометрия — определение статических показателей дыхания (объемов — кроме остаточного; емкостей — кроме ФОЕ и ОЕЛ) путем выдыхания воздуха через прибор, регистрирующий его количество (объем). В современных сухих крыльчатых спирометрах воздух вращает воздушную турбинку, соединенную со стрелкой
Рис. 12.14. Объемы и емкости легких
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Давление в плевральной полости, его изменение при дыхании.
Легкие покрыты висцеральной, а пленка грудной полости — париетальной плеврой. Между ними содержится серозная жидкость. Они плотно прилегают друг к другу (щель 5-10 мкм) и скользят относительно друг друга. Это скольжение необходимо для того, чтобы легкие могли следовать за сложными изменениями грудной клетки не деформируясь. При воспалении (плеврит, спайки) уменьшается вентиляция соответствующих участков легких.
Если ввести иглу в плевральную полость и соединить ее с водным манометром, то окажется, что давление в ней:
при вдохе — на 6-8 см Н2О
при выдохе — на 3-5 см Н2О ниже атмосферного.
Эту разницу между внутриплевральным и атмосферным давлением обычно называют давлением в плевральной полости.
Отрицательное давление в плевральной полости обусловлено эластической тягой легких, т.е. стремлением легких к спадению.
При вдохе увеличение грудной полости ведет к повышению отрицательного давления в плевральной полости, т.е. возрастает транспульмональное давление, приводящее к расправлению легких.
спадаются — выдох.
Аппарат Дондерса.
Если ввести в плевральную полость небольшое количество воздуха, то он рассосется, т.к. в крови мелких вен малого круга кровообращения напряжение раствор. газов меньше, чем в атмосфере. При расслаблении инспираторных мышц транспульмональное давление уменьшается и легкие в силу эластичности спадаются.
Накоплению жидкости в плевральной полости препятствует более низкое онкотическое давление плевральной жидкости (меньше белков), чем в плазме. Имеет значение и понижение гидростатического давления в малом круге кровообращения.
Изменение давления в плевральной полости можно измерить прямым способом (но можно повредить легочную ткань). Но лучше измерять его путем введения в пищевод баллончика l = 10 см (грузная часть пищевода). Стенки пищевода податливы.
Эластическая тяга легких обусловлена 3 факторами:
Поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.
Упругостью ткани стенок альвеол (содержат эластические волокна).
Тонусом бронхиальных мышц.
На любой поверхности раздела между воздухом и жидкостью действуют силы межмолекулярного сцепления, стремящиеся уменьшить величину этой поверхности (силы поверхностного натяжения). Под влиянием этих сил альвеолы стремятся сократиться. Силы поверхностного натяжения создают 2/3 эластической тяги легких. Поверхностное натяжение альвеол в 10 раз меньше теоретически рассчитанного для соответствующей водной поверхности.
Если бы внутренняя поверхность альвеолы была покрыта водным раствором, то поверхностное натяжение должно было быть в 5-8 раз больше. В этих условиях было бы спадение альвеол (ателектаз). Но этого не происходит.
Это значит, что в альвеолярной жидкости на внутренней поверхности альвеол имеются вещества, снижающие поверхностное натяжение, т. е. ПАВ. Их молекулы сильно притягиваются к друг другу, но обладают слабым средством с жидкостью, вследствие этого они собираются на поверхности и тем самым снижают поверхностное натяжение.
Такие вещества называются ПАВ, а в данном случае сурфактантами. Они представляют собой липиды и белки. Образуются специальными клетками альвеол — пневмоцитами II типа. Выстилка имеет толщину 20-100 нм. Но наибольшей поверхностной активностью компонентов этой смеси обладают производные лецитина.
При уменьшении размеров альвеол. молекулы сурфактанта сближаются, их плотность на единицу поверхности больше и поверхностное натяжение снижается — альвеола не спадается.
При увеличении (расширении) альвеол их поверхностное натяжение повышается, так как плотность сурфактанта на единицу поверхности понижается. Это усиливает эластическую тягу легких.
В процессе дыхания усиления дыхательных мышц тратится на преодоление не только эластического сопротивления легких и тканей грудной клетки, но и на преодоление неэластического сопротивления газовому потоку в воздухоносных путях, которое зависит от их просвета.
Нарушение образования сурфактантов приводит к спадению большого количества альвеол — ателектазу — отсутствие вентиляции обширных участков легких.
У новорожденных сурфактанты необходимы для расправления легких при первых дыхательных движениях.
Существует заболевание новорожденных, при котором поверхность альвеол покрыта преципитатом фибрина (геалиновые мембраны), который понижает активность сурфактантов — снижена. Это приводит к неполному расправлению легких и тяжелым нарушением газообмена.
Его содержание понижается после ваготонии, после прекращения кровотока по легочной артерии, при повышенном парциальном давлении О2.
Пневмоторакс — поступление воздуха в плевральную полость (через поврежденную грудную стенку или легкие).
В силу эластичности легких — они спадаются поджимаясь к поршню, занимая 1/3 своего объема.
При одностороннем — легкое на неповрежденной стороне может обеспечивать достаточное насыщение крови О2 и удаление СО2 ( в покое).
Двухсторонний — если не производится искусственная вентиляция легких, или герметизация плевральной полости — к гибели.
Односторонний пневмоторакс иногда применяется для терапевтических целей: введение воздуха в плевральную полость для лечения туберкулеза (каверны).
Соседние файлы в предмете Нормальная физиология
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник