Какое значение имеет отрицательное давление в грудной клетке

Значение отрицательного давления в грудной полости

Отрицательное давление в плевральной полости

Каждое легкое снаружи покрыто серозной оболочкой – плеврой. Она состоит из двух листков: висцерального и пристеночного. Между ними есть узкая щель – полость плевры, содержащая серозную жидкость. Если в полость плевры ввести иглу, соединенную с манометром, можно установить, что давление в ней ниже атмосферного на 6-9 мм.рт.ст. Условно его называют отрицательным давлением.

Легкие в грудной клетке растянуты и плотно прижаты к грудной стенке. При рождении ребенка они находятся в спавшемся состоянии и по объему соответствуют грудной полости. В процессе роста организма грудная клетка растет быстрее легких. Легкие сообщаются с атмосферным воздухом и их эластичная ткань под действием атмосферного давления растягивается. При этом здесь возникает эластичная тяга, т.е. стремление уменьшить объем. Эластичная тяга мешает атмосферному давлению целиком передаваться на плевральную полость, поэтому в ней и создается отрицательное давление.

У взрослого человека при вдохе давление в плевральной полости становится более отрицательным – 9 мм.рт.ст. Во время выдоха – менее отрицательное — 5-6 мм.рт.ст., т.е. всегда остается отрицательным.

Значение отрицательного давления:

  1. Позволяет тканям легких двигаться за грудной клеткой при дыхании. За счет отрицательного давления альвеолы всегда находится в растянутом состоянии, это увеличивает дыхательную поверхность легких.
  2. Отрицательное давление имеет значение для движения крови, обеспечивает возврат к сердцу венозной крови.
  3. Отрицательное давление способствует движению лимфы.
  4. Способствует продвижению пищевого комка по пищеводу.

При ранениях грудной стенки герметичность плевральной полости нарушается. Возникает пневмоторакс, воздух заходит в плевральную щель, давление здесь становится равным атмосферному.

Для оценки возможностей дыхательной системы используют определение легочных объемов:

Дыхательный объем – количество воздуха, который человек вдыхает и выдыхает при спокойном дыхании (500 мл).

Резервный объем вдоха – количество воздуха, которое можно вдохнуть сверх спокойного вдоха (1500-2000 мл).

Резервный объем выдоха – количество воздуха, которое удаляется из легких при максимальном выдохе после спокойного выдоха (1500-2000 мл).

Остаточный объем – количество воздуха, которое остается в легких после максимального выдоха (1000-1500 мл).

Жизненная емкость легких — это количество воздуха, которое можно максимально выдохнуть после максимального вдоха. У мужчин — 4000-5500 мл. У женщин — 3000- 4500 мл

Состояние легочной вентиляции можно оценить также с помощью показателя, который называется – минутный объем дыхания(МОД) – количество воздуха, которое проходит через легкие за 1 мин. МОД зависит от глубины и частоты дыхания. В покое МОД равен 5-8 л/мин.

Источник

Отрицательное давление в плевральной щели

А. Понятие. Отрицательное давление — это величина, на которую давление в плевральной щели ниже атмосферного. В нор­ме это (-4) — (-8) мм. рт. ст. Таким образом, реальное давление в плевральной щели составляет величину порядка 752-756 мм рт. ст. и зависит от фазы дыхательного цикла. При максимальном вдохе отрицательное давление возрастает до -20 мм рт. ст., при макси­мальном выдохе оно приближается к нулю (особенно в нижних от­делах), т.е. становится почти равным атмосферному давлению (760 мм рт. ст.). Отрицательное давление уменьшается в направ­лении сверху вниз примерно на 0,2 мм рт. ст. на каждый сантиметр, так как верхние отделы легких растянуты сильнее нижних, кото­рые сжаты под действием собственного веса.

Б. Происхождение отрицательного давления. Рост легких в процессе развития организма отстает от роста грудной клетки. Поскольку на легкое атмосферный воздух действует только с од­ной стороны — через воздухоносные пути, оно растянуто и прижа-

то к внутренней стороне грудной клетки. Вследствие растянутого состояния легких возникает сила, стремящаяся вызвать спадение легких. Эта сила называется эластической тягой легких (ЭТЛ) -на рис. 7.3 она показана короткими стрелками, направленными внутрь.

Эластичность — сочетание растяжимости и упругости. Так как плевральная щель не сообщается с атмосферой, давление в ней ниже атмосферного на величину ЭТЛ: при спокойном вдохена 8 мм рт.ст.,при спокойном выдохена 4 мм рт. ст.Фильт­рующаяся в плевральную щель жидкость всасывается обратно вис­церальной и париетальной плеврами в лимфатическую систему, что является важным фактором в поддержании отрицательного давле­ния в плевральной щели. По некоторым данным отсос жидкости из плевральной щели дополняет отрицательное давление в ней. О том, что легкие находятся в растянутом состоянии, свидетельствует факт спадения их при пневмотораксе, патологическом состоянии, возникающем при нарушении герметичности плевральной щели, в результате чего атмосферный воздух заполняет плевральную щель, оказываясь между висцеральным и париетальным листками плев­ры (греч. рпеитоп — воздух, Шогах — грудь).

ЭТЛ формируют эластиновые и коллагеновые волокна, глад­кие мышцы сосудов легких и, главное, поверхностное натяже­ние пленки жидкости, покрывающей внутреннюю поверхность альвеол. Силы поверхностного натяжения составляют 2/3 вели­чины ЭТЛ. Величина поверхностного натяжения альвеолярной пленки существенно изменяется в присутствии сурфактанта активного вещества, вырабатываемого легкими, образующего слой толщиной 50 нм внутри альвеол, альвеолярных ходов, мешочков и бронхиол. Сурфактант (англ. зиг1асе асхпге а§еп!з — поверхностно-активные вещества) содержит фосфолипиды (в частности, леци­тин), триглицериды, холестерин, протеины и углеводы. Функции сурфактанта весьма разнообразны.

1.Уменьшает поверхностное натяжение жидкости, покры­вающей альвеолы, примерно в 10 раз, тем самым предотвращает ателектаз (слипание) альвеол и облегчает вдох, что уменьша­ет расход энергии на обеспечение внешнего дыхания. Влияние сурфактанта объясняется повышенной способностью гидрофиль­ных головок его молекул связываться с молекулами воды.

2. Сурфактант выполняет защитную роль: а) обладает бак-териостатической активностью; б) обеспечивает обратный транс­порт пыли и микробов по воздухоносному пути; в) защищает стен­ки альвеол от повреждающего действия окислителей и перекисей; г) уменьшает проницаемость легочной мембраны, что является про-

филактикой развития отека легких — это достигается уменьшени­ем выпотевания жидкости из крови в альвеолы. У курильщиков за­щитные свойства сурфактанта ослабевают, уменьшается актив­ность альвеолярных макрофагов, снижаются защитные функции легких в целом, чаще встречаются заболевания легких и других органов.

3. Сурфактант облегчает диффузию кислорода из альвеол в кровь вследствие хорошей растворимости кислорода в нем. .

В. Значение отрицательного давления для обеспечения внешнего дыхания заключается в том, что оно обеспечивает сжа­тие грудной клетки при выдохе (см. Механизм вдоха и выдоха) и куполообразное положение диафрагмы, так как давление в брюш­ной полости несколько выше атмосферного за счет тонуса мышц стенки живота, а в грудной полости оно ниже атмосферного.

Механизм вдоха и выдоха

Поступление воздуха в легкие при вдохе и изгнание его из лег­ких при выдохе осуществляются благодаря ритмичному расшире­нию и сужению грудной клетки. Вдох является первично активным (осуществляется с непосредственной затратой энергии), выдох так­же может быть первично активным, например при форсированном дыхании. При спокойном же дыхании выдох является вторично ак­тивным, так как осуществляется за счет потенциальной энергии, накопленной при вдохе.

Читайте также:  В какой момент сердечного цикла возникает диастолическое давление

А. Механизм вдоха. При описании механизма вдоха необхо­димо объяснить три одновременно протекающих процесса: 1) рас­ширение грудной клетки, 2) расширение легких, 3) поступление воздуха в альвеолы.

1. Расширение грудной клетки при вдохе обеспечивается со­кращением инспираторных мышц и происходит в трех направлени­ях: вертикальном, фронтальном и сагиттальном. Инспираторными мышцами являются диафрагма, наружные межреберные и межхря­щевые. В вертикальном направлении грудная клетка расширя­ется в основном за счет сокращения диафрагмы и смещения ее су­хожильного центра вниз. Это является следствием того, что точки прикрепления периферических частей диафрагмы к внутренней поверхности грудной клетки по всему периметру находятся ниже купола диафрагмы. Диафрагмальная мышца — главная дыхатель­ная мышца, в норме вентиляция легких на 2/3 осуществляется за счет ее движений. Диафрагма принимает участие в обеспечении кашлевой реакции, рвоты, натуживания, икоты, в родовых схват­ках. При спокойном вдохе купол диафрагмы опускается примерно на 2 см, при глубоком дыхании — до 10 см. У здоровых молодых

мужчин разница между окружностью грудной клетки в положении вдоха и выдоха составляет 7-10 см, а у женщин — 5-8 см.

Расширение грудной клетки в передне-заднем направлении и в стороны происходит при поднятии ребер вследствие сокраще­ния наружных межреберных и межхрящевых мышц. Наружные межреберные мышцы при своем сокращении с одинаковой силой (Р) верхнее ребро тянут вниз, а нижнее поднимают вверх, однако система из каждой пары ребер поднимается вверх (рис. 7.2), так как момент силы, направленной вверх (Р2), больше момента силы, направленной вниз (Р[), поскольку плечо нижнего ребра (Ц) боль­ше верхнего (Ц): р! = Р2. но Ь9>Ь,; поэтому

Так же действуют и межхрящевые

мышцы. В обоих случаях мышечные волокна ориентированы таким образом, что точка их прикрепления к нижележащему ребру расположена дальше от цен­тра вращения, чем точка прикрепления к вышележащему ребру. Расширению грудной клетки способствуют также и силы ее упру­гости, так как грудная клетка в процессе выдоха сильно сжимает­ся, вследствие чего она стремится расшириться. Поэтому энергия

при вдохе расходуется только на частичное преодоление ЭТЛ и брюшной стенки, а ребра поднимаются сами, обеспечивая пример­но до 60% жизненной емкости (по данным одних авторов — до 55%, других — до 70%). При этом расширяющаяся грудная клетка спо­собствует также преодолению ЭТЛ. При расширении грудной клет­ки движение нижних ребер оказывает большее влияние на ее объем и вместе с движением диафрагмы вниз обеспечивает лучшую вен­тиляцию нижних долей легких, чем верхушек легких. Вместе с рас­ширением грудной клетки расширяются и легкие.

2. Главная причина расширения легких при вдохе — ат­мосферное давление воздуха, действующее на легкое только с одной стороны, вспомогательную роль выполняют силы сцепле­ния (адгезии) висцерального и париетального листков плевры (рис. 7.3).

Сила, с которой легкие прижаты к внутренней поверхности груд­ной клетки атмосферным воздухом, равна Р — Рэтл. Такое же дав­ление, естественно, ив плевральной щели (Рпл), т. е. оно меньше атмосферного на величину Р . Р = Р„„ — Р„,„, т. е. на 4-8 мм

т г ] этл пл атм этл’

рт. ст. ниже атмосферного давления. Снаружи на грудную клетку действует Ратм, но это давление на легкие не передается, поэтому на легкие действует только одностороннее атмосферное давление * через воздухоносные пути. Так как снаружи на грудную клетку дей­ствует Ратм, а изнутри Ратм — Рэтл, при вдохе необходимо преодолеть силу ЭТЛ. Поскольку при вдохе ЭТЛ увеличивается вследствие расширения (растяжения) легких, то увеличивается и отрицатель­ное давление в плевральной щели. А это значит, что увеличение отрицательного давления в плевральной щели является не при­чиной, а следствием расширения легких.

Имеется еще одна сила, которая способствует расширению легких при вдохе, — это сила сцепления между висцеральным и па­риетальным листками плевры. Но она крайне мала по сравнению с атмосферным давлением, действующим на легкие через воздухо­носные пути. Об этом свидетельствует, в частности, тот факт, что легкие при открытом пневмотораксе спадаются, когда воздух по­ступает в плевральную щель, и на легкие с обеих сторон — и со сто­роны альвеол, и со стороны плевральной щели — действует одина­ковое атмосферное давление (см. рис. 7.3). Поскольку легкие в условиях пневмоторакса отрываются от внутренней поверхности грудной клетки, это означает, что ЭТЛ превосходит силу сцепле­ния между париетальным и висцеральным листками плевры. По­этому сила сцепления не может обеспечить растяжение легких при вдохе, так как она меньше ЭТЛ, действующей в противоположном направлении. При дыхании висцеральная плевра скользит относи­тельно париетальной, что также свидетельствует о незначительной величине сил сцепления двух листков плевры.

Таким образом, легкие следуют за расширяющейся грудной клеткой при вдохе в основном вследствие действия на них атмос­ферного давления только с одной стороны — через воздухоносные пути. При расширении грудной клетки и легких давление в легких уменьшается примерно на 1,5 мм рт. ст., однако это уменьшение незначительно, на легкие продолжает действовать давление, рав­ное 758-759 мм рт.ст. Это давление и прижимает легкие к внут­ренней поверхности грудной клетки.

3. Поступление воздуха в легкие при их расширении являет­ся результатом некоторого (на 1,5 мм рт.ст.) падения давления в альвеолах. Этого градиента давления оказывается достаточно, по­скольку воздухоносные пути имеют большой просвет и не оказыва­ют существенного сопротивления движению воздуха. Кроме того, увеличение ЭТЛ при вдохе обеспечивает дополнительное расши­рение бронхов. Вслед за вдохом плавно начинается выдох.

Б. Механизм выдоха. При рассмотрении процессов, обеспе­чивающих выдох, необходимо объяснить причины одновременно происходящих сужения грудной клетки, сужения легких и изгна­ния воздуха из легких в атмосферу. Экспираторными мышцами яв­ляются внутренние межреберные мышцы и мышцы брюшной стенки. Хотя в представлениях различных авторов о механизме выдоха противоречий меньше, чем относительно механизмов вдо­ха, однако и по этому вопросу необходимо внести уточнения. Это касается роли отрицательного давления в плевральной щели.

Спокойный выдох осуществляется без непосредственной затраты энергии. Сужение грудной клетки обеспечивает ЭТЛ

и стенки живота. Это достигается следующим образом. При вдо­хе растягиваются легкие, вследствие чего возрастает ЭТЛ. Кроме того, диафрагма опускается вниз и оттесняет органы брюшной полости, растягивая при этом стенку живота. Как только прекра­щается поступление нервных импульсов к мышцам вдоха по ди-афрагмальному и межреберным нервам, прекращается возбужде­ние мышц, вследствие чего они расслабляются. Грудная клетка суживается под влиянием ЭТЛ и постоянно имеющегося тонуса мышц стенки живота — при этом органы брюшной полости оказы­вают давление на диафрагму. Вследствие сужения грудной клет­ки легкие сжимаются. Поднятию купола диафрагмы способству­ет также ЭТЛ. Давление воздуха в легких возрастает на 1,5 мм рт.ст. в результате уменьшения их объема, воздух из легких изго­няется в атмосферу. Несколько затрудняет выдох сужение брон­хов вследствие уменьшения ЭТЛ и наличия тонуса гладких мышц бронхов.

Каким же образом сила ЭТЛ передается на грудную клетку и сжимает ее? Это реализуется за счет уменьшения давления атмосферного воздуха на грудную клетку изнутри через воздухоносные пути и легкие (см. рис. 7.3). Уменьшение давления равно силе ЭТЛ, так как с внутренней стороны реаль- , ное давление, оказываемое воздухом на грудную клетку, равно Ратм — Р этл, а снаружи на грудную клетку действует Раш. Этот перепад давлений (Р,тл) действует и на вдохе, и на выдохе, но вдо­ху он препятствует (преодоление ЭТЛ), а выдоху способствует. Иными словами, ЭТЛ сжимает грудную клетку, как пружину. При этом необходимо учесть, что при вдохе давление в альвеолах уменьшается на 1,5 мм рт.ст., а при выдохе на столько же увели­чивается. В результате сила, которая сжимает грудную клетку, Р сж.гР.кл. = Р этл * 1.5 мм рт.ст. (на вдохе +1,5, на выдохе — 1,5 мм рт.ст.).

Читайте также:  Какое вино полезнее при повышенном давлении

Вспомогательным механизмом передачи ЭТЛ на грудную клет­ку является сила сцепления (адгезии) висцерального и париеталь­ного листков плевры. Но сила сцепления мала, она не добавляется к ЭТЛ и не вычитается из нее, а только способствует удержанию листков плевры друг с другом.

Сужению грудной клетки (опусканию ребер) способствует ее масса. Но главную роль играет ЭТЛ, настолько сильно сжимаю­щая грудную клетку при выдохе, что при вдохе она расправляется сама, без непосредственной затраты энергии за счет сил упругос­ти (потенциальной энергии), накопленной при выдохе. При этом расширяющаяся грудная клетка способствует также преодолению ЭТЛ.

Источник

Источник

Отрицательное давление в грудной полости и его значение

Отрицательное давление плевральной полости.

С момента рождения каждого млекопитающего легкие всегда находятся в более или менее растянутом состоянии. Это объясняется отрицательным давлением в плевральной полости, окружающей легкие (на 3-4 мм рт.ст. ниже атмосферного), которая полностью изолирована от атмо­сферного воздуха.

Благодаря наличию отрицательного давления в плевральной полости в обычных условиях спадания легких не происходит. В спавшемся состоянии легкие находятся только у плода до рождения и первого вдоха, а также в случае, если в плевральную полость войдет воздух или газ, — наступает пневматоракс. При одностороннем пневмотораксе дыхание только одним легким на неповрежденной стороне может обеспечить дыхательную потребность при отсутствии физической нагрузки. Двусторонний пневмоторакс делает не­возможным естественное дыхание, в этом случае единственным способом сохранения жизни является искусственное дыхание.

Растянутые легкие стремят­ся сжаться благодаря собственной эластической тяге и поверхностному натя­жению в альвеолах:

· Эластическая тяга обусловлена эластическими свойствами тканей легких и грудной клетки.

· Поверхностное натяжение в альвеолах формируется покрывающими их изнутри жидкостями. Оно существенно снижается поверхностно-активными веществами – сурфактантами. Они позволяют альвеолам оставаться в расправленном (не спавшемся) состоянии при уменьшении объема (во время выдоха) Сурфактант помогает лёгким усваивать кислород. Мода на безжировое питание приводит к возникновению гипоксий у людей, которые не употребляют в пищу качественные жиры (сурфактант примерно на 90% состоит из жиров).

Механизм вдоха и выдоха.

Вдох и выдох обеспечиваются дыхательными экскурсиями (движениями) грудной клетки и диафрагмы. За организацию этих движений отвечает дыхательный центр продолговатого мозга, который передает к ним импульсы через спинальные центры диафрагмальной и межреберных мышц.

Мышцы, осуществляющие дыхательный акт, подразделяют на:

1) инспираторные (вдоха) — диафрагма и наружные межреберные мышцы. При сокращении инспираторных мышц ребра поднимаются. В результате объем грудной клетки увеличивается, особенно в ее нижних отделах. Сокращение мышцы диафрагмы также вызывает увеличение объема грудной клетки. Во время вдоха диа­фрагма уплощается, а в покое и особенно во время выдоха купол ее подни­мается и перемещается в грудную клетку. При грудном типе дыхание осуществляет­ся за счет сокращения межреберных мышц, при брюшном типе в основном сокращается диафрагма, которая одновременно смещает органы брюшной полости.

2) экспираторные (выдоха) – внутренние межреберные и мышцы брюшной стенки

3) вспомогательные, которые включаются при форсированном дыхании. Это ряд мышц шеи, груди и спины.

Во время вдоха при увеличении объема грудной клетки в замкнутой плевральной полости давление еще больше падает. Вследствие различия между атмосферным давлением в альвеолах и плевральным давлением лег­кие растягиваются, в целом увеличиваясь в объеме, следуя за грудной клеткой. По­явившаяся разница между давлением в легких и атмосферным давлением приводит к тому, что воздух начинает поступать через воздухоносные пути трахея, бронхи, в альвеолы, заполняя их, при этом давление выравнивает­ся.

Выдох в основном происходит пассивно: как только инспираторная мускулатура расслабляется, возросшая в ход вдоха эластическая тяга легких возвращает их в исходное состояние. В результате объем грудной клетки уменьшается и давление в плевральной полости возрастает. Это дав­ление передается на легочную ткань, поэтому одновременно повышается давление воздуха в альвеолах. Теперь уже давление воздуха в легких стано­вится больше, чем в атмосфере, и воздух благодаря этому начинает выхо­дить из легких по воздухоносным путям наружу.

Помимо указанного выше эластического сопротивления легких, дыхательные мышцы вынуждены преодолевать неэластическое сопротивление дыханию. Оно зависит от просвета воздухонос­ных путей — особенно голосовой щели, бронхов. Так, во время вдоха голосовая щель несколько расширяется, на выдохе — сужается, увеличивая сопротивле­ние потоку воздуха, что служит одной из причин большей длительности экспи­раторной фазы. Подобным же образом циклически меняются просвет бронхов и их проходимость. Тонус гладкой мускулатуры бронхов (сила сужения просвета) зависит от активности парасимпатической и симпатической иннервации: вагусные холинэргические влияния усиливают тонус мышц и сужают просвет бронхов, симпатическая адренергическая иннервация оказывает расслабляющее влияние.

В целом сопротивление, а значит – и работа дыхательных мышц, усиливаются с возрастанием глубины дыхания (эластическое сопротивление) и – при чрезмерно частом дыхании (неэластическое сопротивление).

Паттерны дыхания.

Один цикл чередования вдоха и выдоха составляет дыхательный акт.Обычно вдох несколько короче выдоха, у человека их соотношение примерно 1:3.

Паттерн дыхания — это соотношение компонентов дыхательного акта (длительность фаз, глубина дыхания, динамика давления и потоков в воздухоносных путях). Организм избирает такой паттерн дыхания, при котором требуемый уровень альвеолярной вентиляции достигается с наименьшей затратой энергии на работу дыхательных мышц.

Ритмичность дыхательных циклов относительна. Даже в условиях покоя низкоамплитудные дыхательные движения периодически сменяются движениями большой амплитуды, так называемыми вставочными вдохами, после которых наступает удлиненная пауза. Такие высокоамплитудные вдохи способствуют вентиляции альвеол застойных участков легких.

При различных состояниях организма, фармакологических воздействиях или неадекватных окружающих условиях наблюдаются расстройства дыха­ния. Все формы нарушения нормального дыхания объединяются термином «диспноэ». Часто встречается так называемое периодическое дыхание Чейна— Стокса: дыхательные движения постепенно углубляются и учащаются, что приводит к развитию гипервентиляции и гипокапнии. В результате частота и глубина дыхания уменьшаются вплоть до апноэ. Затем концентрация углекис­лоты в крови увеличивается, что в свою очередь приводит к новому нарастанию частоты и глубины дыхания. Причиной могут быть функциональные изменения возбудимости центрального дыхательного механизма, наступающие в результате ги­поксии, либо органического поражения ды­хательного центра. Дыхание Чейна-Сток­са наблюдается иногда у детей младшего возраста, у практически здоровых людей во время сна, а также в горах.

При хронической гипоксии головного мозга или отделении перерезкой передней части моста среднего мозга дыхание напоминает «лягушачье» — после развития вдоха следует инспираторная задержка и короткий выдох. Такой тип дыхания называется апнейстическим. Он может быть вызван снижением тонического импульсного потока к нервным клеткам пневмотаксического центра, регулирующего соотношение фаз дыхательного цикла, или частичной блокадой сенсорной информации, поступающей по блуждающему нерву.

Читайте также:  Какое мрт делают при высоком давлении

Если устранены все влияния, исходя­щие из ростральных отделов центральной нервной системы, то дыхание приобретает судорожный характер — «гаспинг-дыхание», с резким вдохом макси­мальной амплитуды, в котором принимают участие не только дыхательные мышцы, но и другая скелетная мускулатура. Выдох происходит активно. Ды­хательные движения становятся редкими, с большими экспираторными пауза­ми. «Гаспинг-дыхание» присуще черепахам и суркам во время спячки.

Особый характер дыхания отмечен при одышке, т. е. при нарушении часто­ты и глубины дыхательных движений, сопровождающихся субъективным ощущением удушья.

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

Источник

Отрицательное давление в грудной полости и его значение

Сокращение дыхательных мышц грудной клетки и диафрагмы при вдохе вызывает увеличение объема легких, а при их расслаблении во время выдоха легкие спадаются до исходного объема. Объем легких как при вдохе, так и при выдохе изменяется пассивно, поскольку благодаря своей высокой эластичности и растяжимости легкие следуют за изменениями объема грудной полости, вызванными сокращением дыхательных мышц. Это положение иллюстрирует следующая модель пассивного увеличения объема легких (рис. 10.3). В этой модели легкие могут быть рассмотрены в качестве эластичного баллона, помещенного внутрь емкости, выполненной из ригидных стенок и гибкой диафрагмы. Пространство между эластичным баллоном и стенками емкости является герметичным. Эта модель позволяет изменять давление внутри емкости при движении вниз гибкой диафрагмы. При увеличении объема емкости, вызванном движением вниз гибкой диафрагмы, давление внутри емкости, т. е. вне баллона, становится ниже атмосферного в соответствии с законом идеального газа. Баллон раздувается, поскольку давление внутри него (атмосферное) становится выше, чем давление в емкости вокруг баллона.

Рис. 10.3. Схема модели, демонстрирующей пассивное раздувание легких при опускании диафрагмы. При опускании вниз диафрагмы давление воздуха внутри емкости становится ниже атмосферного давления, что вызывает раздувание эластичного баллона. Р — атмосферное давление.

В приложении к легким человека, которые полностью заполняют объем грудной полости, их поверхность и внутренняя поверхность грудной полости покрыты плевральной мембраной. Плевральная мембрана поверхности легких (висцеральная плевра) физически не соприкасается с плевральной мембраной, покрывающей грудную стенку (париетальная плевра), так как между этими мембранами имеется плевральное пространство (синоним — внутриплевральное пространство), заполненное тонким слоем жидкости — плевральной жидкости. Эта жидкость увлажняет поверхность долей легких и способствует их скольжению относительно друг друга во время раздувания легких, а также облегчает трение между париетальным и висцеральным листками плевры. Жидкость несжимаема и ее объем не увеличивается при уменьшении давления в плевральной полости. Поэтому высокоэластичные легкие в точности повторяют изменение объема грудной полости во время вдоха. Бронхи, кровеносные сосуды, нервы и лимфатические сосуды формируют корень легкого, с помощью которого легкие фиксированы в области средостения. Механические свойства этих тканей обусловливают основную степень усилия, которое должны развивать дыхательные мышцы при сокращении, чтобы вызывать увеличение объема легких. В обычных условиях эластическая тяга легких создает незначительную величину отрицательного давления в тонком слое жидкости внутриплеврального пространства относительно атмосферного давления. Отрицательное внутриплевральное давление варьирует в соответствии с фазами дыхательного цикла от -5 (выдох) до -10 см водн. ст. (вдох) ниже атмосферного давления (рис. 10.4). Отрицательное внутриплевральное давление способно вызвать уменьшение (коллапс) объема грудной полости, которому ткани грудной клетки противодействуют своей чрезвычайно ригидной структурой. Диафрагма по сравнению с грудной клеткой, является более эластичной, и ее купол поднимается вверх под влиянием градиента давления, существующего между плевральной и брюшной полостями.

В состоянии, когда легкие не расширяются и не спадаются (пауза соответственно после вдоха или выдоха), в дыхательных путях отсутствует поток воздуха и давление в альвеолах равно атмосферному. В этом случае градиент между атмосферным и внутриплевральным давлением будет точно уравновешивать давление, развиваемое эластической тягой легких (см. рис. 10.4). В этих условиях величина внутриплеврального давления равна разности между давлением в дыхательных путях и давлением, развиваемым эластической тягой легких. Поэтому чем больше растянуты легкие, тем сильнее будет эластическая тяга легких и более отрицательным относительно атмосферного является величина внутриплеврального давления. Так происходит во время вдоха, когда диафрагма опускается вниз и эластическая тяга легких противодействует раздуванию легких, а величина внутриплеврального давления становится более отрицательной. При вдохе это отрицательное давление способствует продвижению воздуха по дыхательным путям в сторону альвеол, преодолевая сопротивление дыхательных путей. В результате воздух поступает из внешней среды в альвеолы.

Рис. 10.4. Давление в альвеолах и внутриплевральное давление в фазу вдоха и выдоха дыхательного цикла. В отсутствии потока воздуха в дыхательных путях давление в них равно атмосферному (А), а эластическая тяга легких создает в альвеолах давление Е. В этих условиях величина внутри-плеврального давления равна разнице А — Е. При вдохе сокращение диафрагмы увеличивает величину отрицательного давления в плевральной полости до —10 см водн. ст., которое способствует преодолению сопротивления потоку воздуха в дыхательных путях, и воздух движется из внешней среды в альвеолы. Величина внутриплеврального давления обусловлена разницей между давлениями А — R — Е. При выдохе диафрагма расслабляется и внутриплевральное давление становится менее отрицательным относительно атмосферного давления (—5 см водн. ст.). Альвеолы вследствие своей эластичности уменьшают свой диаметр, в них повышается давление Е. Градиент давлений между альвеолами и внешней средой сопособствует выведению воздуха из альвеол по дыхательным путям во внешнюю среду. Величина внутриплеврального давленния обусловлена суммой A+R за вычетом давления внутри альвеол, т. е. А + R — Е. А — атмосферное давление, Е —давление в альвеолах, возникающее вследствие эластической тяги легких, R —давление, обеспечивающее преодоление сопротивления потоку воздуха в дыхательных путях, Р — внутриплевральное давление.

При выдохе диафрагма расслабляется и величина внутриплеврального давления становится менее отрицательной. В этих условиях альвеолы в связи с высокой эластичностью их стенок начинают уменьшаться в размере и выталкивают воздух из легких через дыхательные пути. Сопротивление дыхательных путей потоку воздуха поддерживает положительное давление в альвеолах и препятствует их быстрому спадению. Таким образом, в спокойном состоянии при выдохе поток воздуха в дыхательных путях обусловлен только эластической тягой легких.

Пневмоторакс. Если воздух входит во внутриплевральное пространство, например через раневое отверстие, в легких возникает коллапс, грудная клетка незначительно увеличивается в объеме, а диафрагма опускается вниз, как только внутриплевральное давление становится равным атмосферному давлению. Это состояние называется пневмотораксом, при котором легкие утрачивают способность следовать за изменением объема грудной полости во время дыхательных движений. Более того, во время вдоха воздух через раневое отверстие входит в грудную полость и выходит во время выдоха без изменения объема легких во время дыхательных движений, что делает невозможным газообмен между внешней средой и организмом.

Источник

Источник