Какое нормальное парциальное давление углекислоты в венозной крови

Парциальное давление кислорода в артериальной крови.

Краткое название показателя: PaO2

Также: Oxygen tension

Категория: Кислотно-основное состояние и газы крови

Единица измерения: мм.рт.ст

Краткое описание

РаО2 — напряжение кислорода в артериальной крови; измеря­ется в единицах давления (традиционно — в мм рт. ст. [torr]), а в последнее время — в килопаскалях [кПа}). РаО2 численно равно давлению, под которым произошло насыщение крови кислородом. Его можно определить и как давление кислорода, тре­бующееся для того, чтобы удержать в артериальной крови растворенный кислород. Чем выше Ра02, тем больше кислорода содержится в крови и тем выше скорость движения кислорода из капиллярной крови в ткани. В норме (то есть когда здоровый человек дышит атмосферным воздухом) этот показатель состав­ляет 92-98 мм рт. ст. РаО2 обычно измеряют в лабораторных ус­ловиях, в пробе артериальной крови или в мониторном режиме микроэлектродом, введенным в артерию. С возрастом газовый состав крови претерпевает некоторые изменения. Напряжение О2 в артериальной крови здоровых молодых людей в среднем составляет 95-100 мм рт. ст.; к 40 годам оно снижается примерно до 80 мм рт. ст., а к 70 годам — до 70 мм рт. ст. Эти изменения связаны с тем, что с возрастом увеличивается неравномерность функционирования различных участков легких.

Подробное описание

РаО2 наряду с двумя другими величинами (раСО2 и рН) составляют такое понятие как «газы крови» (Arterial blood gases — ABG(s)). Значение рaО2 зависит от многих параметров, главными из которых являются возраст и высота нахождения пациента (парциальное давление О2 в атмосферном воздухе). Таким образом, показатель рО2 должн быть интепретирован индивидуально для каждого пациента.

Точные результаты для ABGs зависит от сбора, обработки и собственно анализа образца. Клинически важные ошибки могут возникать на любом из этих этапов, но измерение газов крови являются особенно уязвимыми к ошибкам возникающим до проведения анализа. Наиболее распространенные проблемы включают в себя

— забор не артериальной (смешанной или венозной) крови;

— наличие воздушных пузырьков в пробе;

— недостаточное или чрезмерное количество антикоагулянта в образце;

— задержка проведения анализа и хранение образца всё это время неохлажденным.

Надлежащий образец крови для анализа ABG содержит, как правило,1-3 мл артериальной крови, взятой пункционно анаэробно из периферической артерии в специальный контейнер из пластика, с помощью иглы малого диаметра. Пузырьки воздуха, которые могут попасть во время отбора пробы, должны быть незамедлительно удалены. Воздух в помещении имеет раО2 около 150 мм рт.ст. (на уровне моря) и раСО2 практически равное нулю. Таким образом, воздушные пузырьки, которые смешиваются с артериальной кровью сдвигают (увеличивают) раО2 к 150 мм рт.ст. и уменьшают (снижают) раСО2.

Если в качестве антикоагулянта используется гепарин и забор производится шприцем а не специальным контейнером, следует учитывать рН гепарина, который равен приблизительно 7,0. Таким образом, избыток гепарина может изменить все три значения ABG (раО2, раСО2, рН). Очень малое количество гепарина необходимо, чтобы предотвратить свертывание; 0,05 — 0,10 мл разбавленного раствора гепарина (1000 ЕД / мл), будет противодействовать свертыванию приблизительно 1 мл крови, не влияя при этом на рН, раО2, раСО2. После промывки шприца гепарином, достаточное количество его обычно остается в мертвом пространстве шприца и иглы, чего хватает для антикоагуляции без искажения значений ABG.

После сбора, образец должен быть проанализирован в кратчайшие сроки. Если происходит задержка более 10 минут, образец должен быть погружен в контейнер со льдом. Лейкоциты и тромбоциты продолжают потреблять кислород в образце и после забора, и могут вызвать значительное падение раО2, при хранении в течение долгого времени при комнатной температуре, особенно в условиях лейкоцитоза или тромбоцитоза. Охлаждение позволит предотвратить любые клинически важные изменения, по крайней мере в течение 1 часа, за счёт снижения метаболической активности этих клеток.

Референтные значения

Норма
дети и молодые9298мм.рт.ст
зрелый8098мм.рт.ст
пожилые7092мм.рт.ст

Факторы повышения и понижения

Другие
Пребывание на больших высотахПонижение
Пожилой возрастПонижение
Старческий возрастПонижение
Загрязнение (контаминация) пробыПовышение
Длительное хранение пробыПонижение
Неправильное хранение и транспортировка пробыПонижение

Источники и литература

Источник

Анализ газового состава крови

Анализ газового состава крови (анализ артериальной крови ABG), представляет собой тест, который измеряет количество кислорода и углекислого газа в крови, а также кислотность (рН) крови. Анализ ABG оценивает, насколько эффективно легкие подают кислород в кровь и насколько эффективно они устраняют углекислый газ из него. Тест также показывает, насколько хорошо легкие и почки взаимодействуют для поддержания нормального рН крови (кислотно-щелочной баланс). Тестирование крови, как правило, проводится для оценки респираторных заболеваний и других состояний, которые могут влиять на легкие, а также для регулирования здоровья пациентов, получающих кислородную терапию (респираторная терапия). Кроме того, кислотно-базовый компонент теста содержит информацию о функции почек.

Что такое анализ газового состава крови?

Тест проводится по крови из артерии. Он измеряет парциальное давление и углекислый газ в крови, а также содержание кислорода, насыщенность им, содержание бикарбоната и рН крови. Кислород в легких переносится в ткани через кровоток, но только небольшое количество может фактически растворяться в артериальной крови. Количество этого газа зависит от парциального давления кислорода (давление, которое газ оказывает на стенки артерий). Поэтому тестирование парциального давления кислорода фактически измеряет, сколько его доставляется в легкие через кровь.

Двуокись углерода выделяется как побочный продукт клеточного метаболизма. Его частичное давление указывает, насколько хорошо легкие устраняют этот углекислый газ. Остальная часть кислорода, который не растворяется в крови, сочетается с гемоглобином, соединением белка и железа, содержащимся в эритроцитах. Измерение содержания кислорода в анализе ABG показывает, сколько кислорода сочетается с гемоглобином. Важным показателем является насыщение кислородом, которое сравнивает количество кислорода, фактически связанного с гемоглобином и с общим количеством кислорода.

Читайте также:  Какое давление в шинах r19 мазда

Как проходит процедура?

Специальной подготовки к процедуре нет. Пациентам не ставят ограничений на выпивку или еду перед тестом. Концентрация кислорода должна оставаться неизменной в течение 20 минут до анализа; если тест нужно проводить без насыщения кислородом, газ должен быть отключен на 20 минут до проведения теста. Во время теста пациенту следует нормально дышать. Образец крови получают путем артериальной пункции (обычно в запястье, хотя может проводиться в пах или руку). Если требуется прокол, кожа поверх артерии очищается антисептиком. Затем медик собирает кровь с помощью небольшой стерильной иглы, прикрепленной к одноразовому шприцу. Пациент может почувствовать короткое пульсирование или судороги в месте прокола. После того, как материал будет собран, он должен быть доставлен в лабораторию для анализа как можно скорее.

После того, как кровь была взята, врач или пациент прижимает вату к месту прокола на 10-15 минут, чтобы остановить кровь, а затем плотно обматывает повязкой. Пациент должен спокойно отдохнуть после завершения процедуры. Медицинские работники будут наблюдать за признаками кровотечения или проблемами с кровообращением. Риски их получить, когда тест выполняется правильно — очень низкие. Включают кровотечение или кровоподтеки на месте сдачи крови или через некоторое время. Очень редко может возникнуть проблема с циркуляцией в области прокола.

Результаты тестирования

Результаты анализа состоят из нескольких показателей, которые помогут определить насколько эффективно функционирует кровяная система. Также они выражают уровень насыщения организма кислородом, что очень важно для внутренних органов. Основными критериями являются:

Частичное давление (РР)

Частичное давление — это способ оценки количества молекул определенного газа в смеси газов. Это количество давления конкретного газа в общем давление. Например, мы обычно дышим воздухом, который на уровне моря имеет давление 100 кПа, кислород составляет 21% от 100 кПа, что соответствует парциальному давлению 21 кПа. При проверке газов крови закон Генри используется для определения парциальных давлений газов в крови. Этот закон гласит, что, когда газ растворяется в жидкости, парциальное давление (то есть концентрация газа) внутри жидкости такое же, как и в газе, контактирующем с жидкостью. Поэтому можно измерить парциальное давление газов в крови. Вы увидите графу с пометками PaO2 — парциальное давление кислорода в артериальной крови и PaCO2 — парциальное давление углекислого газа.

Базовый избыток (BE)

Это количество сильного основания, которое необходимо добавить или вычесть из вещества, чтобы вернуть рН в норму (7.40). Значение вне нормального диапазона (от -2 до +2) указывает на метаболическую причину ацидоза или алкалоза.

Бикарбонат (HCO3)

Бикарбонат продуцируется почками и действует как буфер для поддержания рН. Нормальный диапазон для бикарбоната составляет 22-26 мм / л. Если в крови есть дополнительные кислоты, уровень бикарбоната будет падать, поскольку ионы используются для буферизации этих кислот. Если есть хронический ацидоз, почками продуцируется немного больше бикарбоната, чтобы поддерживать рН в норме. Именно по этой причине повышенный бикарбонат может наблюдаться при хронической респираторной недостаточности 2-го типа, когда рН остается нормальным, несмотря на повышенный СО2.

Электролиты

Венозный или артериальный анализ газа — хороший способ быстро проверить показатели калия и натрия. Это особенно важно при непосредственном лечении сердечных аритмий, поскольку дает немедленный результат.

Лактат

Вырабатывается как побочный продукт анаэробного дыхания. Повышенный лактат может быть вызван любым процессом, который заставляет ткань использовать анаэробное дыхание. Это эффективный показатель плохой перфузии тканей.

Глюкоза

Глюкоза особенно важна при лечении пациента, который страдает потерей сознания или частыми судорогами. Это также необходимо для пациентов с подозрением на диабет. Глюкоза может повышаться у пациентов с тяжелым сепсисом или другим метаболическим стрессом.

Другие компоненты анализа

Они редко нарушаются и часто упускаются из виду. Однако важно заметить, если они вне нормы. Это особенно актуально в случае окиси углерода, так как могут быть другие люди, которым грозит опасность.

Окись углерода (CO)

Обычно СО составляет <10%. У жителей города или курильщиков уровни могут повышаться до 10%, но уровень> 10% указывает на отравление, обычно из-за слабо вентилируемых котлов или старых систем отопления. При уровнях 10-20% будут наблюдаться симптомы, такие как тошнота, головная боль, рвота и головокружение. При более высоких уровнях пациенты могут испытывать аритмию, сердечную ишемию, респираторную недостаточность и лёгкие судороги.

Эффективность анализа

Тестирование гарантирует почти стопроцентный результат данных о функционировании кровеносной системы вашего организма. Если случаются ошибки, то, чаще всего, из-за невнимательности персонала. Эффективность сдачи анализа и результата напрямую зависит от аккуратности медицинского сотрудника. Исследование кровяных газов часто подвергается риску ошибок, вызванных неправильной выборкой, транспортировкой и хранением. Поэтому лабораториям следует придерживаться особых рекомендаций по предотвращению потенциальных ошибок, вызванных неправильным обращением с образцом.

Тест должен выполняться обученным персоналом лаборатории. Компетенция сотрудников, ответственных за анализ крови, должна оцениваться для новых работников, а квалификация переоценивается ежегодно. Это будет гарантировать более точный результат. Необходимо регистрировать время сдачи образца в центральную лабораторию. Время между отбором проб и анализом не должно превышать 30 минут. Если время превышает рекомендуемый интервал, необходимо проинформировать об этом клинический персонал, который будет исследовать кровь.

Для избегания недоразумений и путаницы, пациенту необходимо попросить, чтобы емкость с его материалом подписали или надежно приклеили пометку с фамилией. Перед тестированием работник, ответственный за анализ образцов, должен проверить детали на этикетке в соответствии с данными на бланке теста, чтобы подтвердить идентификацию пациента. Если образец необходимо погружать в ледяную суспензию (смесь льда и воды) до тех пор, пока анализ не будет выполнен (то есть, если ожидается задержка более 30 минут), целостность этикеток должна быть защищена даже во время погружения.

Немаловажной является и сама процедура. Правильные результаты гарантированы в том случае, если придерживается точный ход анализа. Перед тестом необходимо проверить качество образца цельной крови. Пробы крови, содержащие пузырьки воздуха или видимые сгустки, неприемлемы для анализа. Правильное смешивание образцов цельной крови имеет решающее значение для получения точных результатов гемоглобина. Капиллярные образцы следует смешивать с помощью металлического стержня и магнита. Магнит следует перемещать из конца в конец по капилляру, пока компоненты не будут равномерно распределены (гомогенизированы) или не менее 5 секунд. Один конец капилляра следует открыть, осторожно удалив крышку герметика. Металлический стержень нужно удалить, медленно потянув магнит над капилляром, стараясь не проливать кровь и не вводить воздух в образец. Перед введением образца в анализатор, противоположный конец капилляра следует открыть, удалив оставшуюся крышку герметика. Образец должен быть пропущен до конца, чтобы удалить захваченный воздух.

Читайте также:  Какие лекарства от давления в турции

Анализ газового состава крови — это эффективный метод проверки циркуляции кислорода в крови. Он не определит конкретные болезни, но покажет, могут ли они проявиться в будущем. Насыщенный кислородом организм лучше функционирует, а количество жалоб на здоровье значительно уменьшается. По мнению медиков, для полной диагностики организма время от времени следует проводить анализ газового состава крови.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Источник

Физиология и патофизиология газообмена

Транспорт О2 из атмосферы до периферических тканей организма представляет собой многоступенчатый процесс.

После того как воздух попадает в альвеолы легких, следующим этапом газообмена является диффузия кислорода из альвеол в кровь легочных капилляров и диффузия СО2 из крови легочных капилляров в альвеолы. Диффузия представляет собой простое движение молекул через респираторную мембрану из области более высокого давления в область более низкого.

Таким образом, парциальное давление О2 (PO2) является одним из основных факторов, определяющих его транспорт в организме, причем не только в легких, но и во всем теле вплоть до периферических тканей.

Помимо градиента давления скорость диффузии определяется 1) растворимостью газа в жидкости; 2) площадью поверхности, через которую протекает диффузия; 3) расстоянием, которое газ должен пройти при диффузии; 4) молекулярным весом газа; 5) температурой жидкости. Поскольку в живом организме температура постоянна, она обычно не учитывается.

Применительно к альвеолокапиллярной мембране скорость диффузии газа будет зависеть от:

  1. толщины мембраны;
  2. площади поверхности мембраны;
  3. диффузионного коэффициента газа в мембране;
  4. градиента давления газа по обе стороны мембраны.

По мере транспорта О2 от легких к периферическим тканям его парциальное давление снижается. Если в атмосферном воздухе при нормальном атмосферном давлении парциальное давление О2 составляет 159 мм рт. ст., то в периферических тканях, в зависимости от уровня их обмена, — 35-85 мм рт. ст. Венозная кровь, поступающая в легкие, имеет РО2 около 40 мм рт. ст.

Уже в альвеолярном воздухе содержание О2 и его парциальное давление отличаются от атмосферного воздуха (13,6 % и 104 мм рт. ст. соответственно). Это происходит вследствие нескольких причин:

  1. альвеолярный воздух лишь частично замещается атмосферным во время каждого вдоха;
  2. О2 постоянно абсорбируется из альвеолярного воздуха;
  3. СО2 постоянно диффундирует из крови легочных капилляров в альвеолы;
  4. сухой атмосферный воздух, который поступает в дыхательные пути, увлажняется, насыщаясь водными парами, прежде чем достигает альвеол.

В артериальной крови, покидающей легкие, РО2 уменьшается уже до 95 мм рт. ст. вследствие так называемого венозного примешивания. Дело в том, что определенное количество венозной крови (1-2 %) не аэрируется в легких, поступая напрямую в артериальное русло, что и приводит к некоторому снижению РО2. Увеличение объема шунтированной крови, которое происходит при гипоксии может приводить к существенному понижению артериального РО2.

Увеличение толщины альвеолокапиллярной мембраны, затрудняющее диффузию газов, часто является следствием отека — увеличения количества жидкости в межклеточном пространстве мембраны. Состояние характеризуется как интерстициальный отек легких. Кроме того, жидкость может накапливаться и в альвеолах, так что газам приходится проходить не только через мембрану, но и через жидкость, что характерно уже для альвеолярного отека легких. В большинстве случаев имеет место сочетание этих состояний той или иной степени выраженности. Имеет значение и исходное состояние легких. При ряде заболеваний, может возникнуть фиброз какого либо участка легких с утолщением альвеолокапиллярной мембраны. Поскольку скорость диффузии газов через мембрану обратно пропорциональна ее толщине, любой фактор, увеличивающий ее толщину более чем в два — три раза, может существенно нарушать нормальный газообмен.

Из капилляров кровеносного русла О2 диффундирует в периферические ткани, поскольку парциальное давление О2 в капиллярах выше, чем в тканях. РО2 в интерстициальной жидкости вне капилляров составляет в среднем 40 мм рт. ст., тогда как в артериальной крови — 95 мм рт. ст. В венозной крови, покидающей капилляр, РО2 также составляет около 40 мм рт. ст. Если скорость тканевого кровотока увеличивается, большие количества О2 доставляются тканям и тканевое РО2 увеличивается. Увеличение тканевого метаболизма приводит к снижению РО2 как в периферических тканях, так и в венозной крови.

Поскольку О2 постоянно используется тканями, внутриклеточное РО2 всегда остается ниже интерстициального. Со снижением интерстициального РО2 снижается и РО2 внутри клеток, повышение интерстициального РО2 ведет к повышению внутриклеточного РО2. Важным общим свойством живых организмов является большой запас функциональной прочности систем поддержания жизнедеятельности. Такая особенность характерна и для процессов газообмена. Для полного обеспечения процессов метаболизма достаточно РО2 1-5 мм рт. ст., в то время как внутриклеточное РО2 может варьировать от 5 до 60 мм рт. ст. (в зависимости от протяженности капиллярного русла). Поэтому организм человека и может функционировать при весьма существенном снижении РО2 в атмосферном воздухе.

В нормальных условиях около 97 % кислорода от легких к тканям переносится в химически связанном виде гемоглобином. Лишь 3 % составляет О2 растворенный в плазме крови. Следует учитывать, что способность гемоглобина связывать О2 является ограниченной. Каждый грамм гемоглобина может максимально связать 1,34 мл О2. Эта так называемая константа Гюффнера. Соответственно кислородная емкость крови (т. е. максимальное общее количество кислорода, которое может быть перенесено кровью) будет находиться в прямой зависимости от содержания гемоглобина:

Кислородная емкость крови = [ Hb ]

x

1, 34 мл O2 / 100 мл крови

У здоровых людей с содержанием гемоглобина 150 г/л кислородная емкость крови составляет 201 мл О2/л крови. Реально переносимое количество мл О2 обычно меньше.

Ключевым фактором, характеризующим количество кислорода, связанного с гемоглобином, является насыщение артериальной крови кислородом (сатурация, SaO2). Оно выражает отношение между количеством кислорода, связанного с гемоглобином и кислородной емкостью крови:

SaO2 = ( HbO2 / кислородная емкость крови )

x

100 %

Содержание кислорода в крови (контент, СаО2) — это сумма связанного с гемоглобином и растворенного в плазме О2:

CaO2 = ( 1, 34

x

[ Hb ]

x

SaO2 ) + ( PaO2

x

0, 0031 )

Очевидно, что СаО2 зависит главным образом от фракции О2, связанной с гемоглобином.

Читайте также:  Какое давление лучше для почек

Кровь содержит незначительное количество кислорода, не связанного с гемоглобином, а растворенного в плазме. Согласно закону Генри, количество растворенного кислорода пропорционально парциальному давлению О2 и коэффициенту его растворимости, а растворимость О2 в крови очень низка: только 0,0031 мл О2 растворяется в 0,1 л крови при увеличении давления на 1 мм рт. ст. Таким образом, при РаО2 равным 100 мм рт. ст., в 100 мл артериальной крови содержится только 0,31 мл растворенного О2. Со снижением РаО2 количество растворенного в плазме О2 станет еще меньше.

Содержание О2 в связи с изменениями РаО2 колеблется незначительно до тех пор, пока устойчиво поддерживается SaO2. Изменения содержания гемоглобина приводят к более заметным сдвигам СаО2. Нормальное СаО2 равно 198 мл О2/л крови при условии, что PaO2 = 100 мм рт. ст., содержание гемоглобина 150 г/л, а SaO2 = 97 %. Умеренная анемия (например гемоглобин 120 г/л) при поддержании нормального РаО2 проявляется снижением СаО2 до 160 мл О2/л крови.

Сродство гемоглобина к кислороду возрастает по мере последовательного связывания молекул О2, что придает кривой диссоциации оксигемоглобина сигмовидную или S-образную форму. Эта кривая, соотносящая изменения SaO2 в зависимости от РаО2, важна для анализа процессов транспорта кислорода к периферическим тканям:

Рис. 1: Кривая диссоциации оксигемоглобина

Верхняя часть кривой (при РаО2 > 60 мм рт. ст.) — относительно плоская. Это приводит к тому, что SaO2, а следовательно, и СаО2 остаются достаточно постоянными, несмотря на значительные колебания РаО2. Повышение СаО2 или транспорта кислорода в этой области кривой может быть достигнуто только за счет увеличения содержания гемоглобина (например, при переливании крови) или растворения в плазме крови кислорода (например при гипербарической оксигенации).

Крутые средняя и нижняя часть кривой иллюстрируют то положение, что, хотя SaO2 падает (когда РаО2 оказывается ниже 60 мм рт. ст.), процесс насыщения гемоглобина кислородом продолжается, поскольку градиент РаО2 между альвеолами и капиллярами сохраняется. Периферические ткани в этих условиях могут продолжать извлекать достаточное количество О2, несмотря на снижение капиллярного РО2.

РаО2, при котором гемоглобин насыщен кислородом на 50 % (при 37 °С и рН 7,4) известно как Р50. Это общепринятая мера сродства гемоглобина к кислороду. Р50 в крови человека в норме составляет 26,6 мм. рт. ст. Однако оно может изменяться при различных метаболических и физиологических условиях, воздействующих на процесс связывания кислорода гемоглобином.

Когда сродство гемоглобина к кислороду падает, О2 с большой легкостью переходит в ткани, и наоборот. Повышение Р50 определяет сдвиг кривой диссоциации оксигемоглобина вправо. Сродство гемоглобина к кислороду снижается, указывая, что теперь требуется более высокое РаО2 для поддержания SaO2 на прежнем уровне. Более низкое сродство гемоглобина к кислороду означает повышенное высвобождение кислорода в тканях, но ухудшение связывания гемоглобина с О2 в легких.

Сдвиг кривой диссоциации влево и соответствующее снижение Р50 указывает на повышенное сродство гемоглобина к кислороду — улучшение связывания в легких и ухудшение высвобождения О2 в периферических тканях. На Р50 и положение кривой диссоциации гемоглобина влияет несколько факторов, в частности, рН и температура.

Для обеспечения обмена веществ в периферических тканях важное значение имеет не только общее содержание О2 — ключевой физиологической переменной является его доставка. Доставка кислорода — это количество кислорода, транспортируемое к тканям в единицу времени. Чтобы поддержать аэробный метаболизм и предотвратить накопление лактата, периферические ткани должны постоянно снабжаться кислородом. Обстоятельства, которые определяют адекватность кислородного снабжения, разнообразны и включают состояние покоя, физическую нагрузку, гиперкатаболические состояния и инфекцию.

Доставка кислорода к периферическим тканям зависит от количества кислорода в определенном объеме крови и уровня кровотока. Хотя объем кровотока к отдельным органам различен, в периферических тканях он в целом равен сердечному выбросу (CB). Системная доставка О2 (DО2) рассчитывается как DO2 = СВ (л/мин) x CaO2 (мл/л).

Нередко DО2 рассчитывают с учетом площади тела. То есть на самом деле рассчитывают индекс DО2. Нормальными величинами индекса DО2 считают 520-720 мл·мин-1·м-2.

Доставка кислорода падает при уменьшении сердечного выброса или снижении объемного содержания кислорода в артериальной крови. Это характерно для многих критических и терминальных состояний и чаще всего наблюдается при выраженных проявлениях сердечной недостаточности, повышении внутрилегочного шунтирования крови, централизации кровообращения, при различных пороках сердца, кардиохирургических и других длительных и травматичных вмешательствах. С практической точки зрения следует иметь в виду, что любое нарушение кровообращения будет ухудшать доставку О2.

Потребление кислорода является заключительным этапом транспорта кислорода тканям и представляет собой кислородное обеспечение тканевого метаболизма. В условиях основного обмена взрослый человек потребляет около 250 мл О2 в 1 мин. Однако скорость утилизации О2 различными тканями значительно отличается.

Потребление кислорода тканями (VO2) — интегральный показатель, учитывающий как циркуляторный компонент транспорта кислорода (сердечный выброс), так и его гемический компонент (артериовенозное различие по кислороду, CaO2 — CvO2). Его можно определить по формуле: VO2 = СВ x (CaO2 — CvO2) x 10. Так же как и DО2, VO2 часто выражают в виде индекса, то есть в перерасчете на площадь тела. Нормальными величинами индекса потребления кислорода являются 110-160 мл·мин-1·м-2.

В зависимости от состояния организма (покой, нагрузка или заболевание) меняется фракционное распределение СВ к органам. Более того, и экстракция кислорода тканями различных органов неодинакова. Например, миокард получает лишь малую фракцию СВ, но извлекает почти весь доставляемый кислород.

Нормальный компенсаторный ответ на снижение кровотока проявляется в виде увеличения поглощения кислорода, достаточного для поддержания VO2 на нормальном уровне. Падение сердечного выброса компенсируется увеличением артериовенозного различия по кислороду, и VO2 остается неизменным. Снижение насыщения венозной крови кислородом отражает увеличение экстракции кислорода.

Способность компенсировать снижение кровотока повышением поглощения кислорода является характерной особенностью микроциркуляторного русла практически всех органов и тканей за исключением сердца и диафрагмы. В них высокая экстракция кислорода из капиллярного ложа происходит уже в норме. Поэтому уровень кислорода в тканях сердца и диафрагмы весьма чувствителен даже к незначительным изменениям кровотока.

Таким образом, основными факторами, определяющими доставку О2, являются:

  • парциальное давление кислорода в атмосферном воздухе;
  • нормальное состояние альвеолокапиллярной мембраны;
  • эффективность дыхательной системы;
  • достаточное количество гемоглобина крови;
  • эффективность системы кровообращения.

Сергей Науменко,

г. Новосибирск, 2018 г.

Источник