Какое давление в вакуумной установке
Содержание статьи
Как выбрать вакуумный насос. Часть 1: Вакуум
Содержание статьи:
- Введение.
- Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».
- Градация ВАКУУМА по глубине.
- Основные законы ФИЗИКИ ГАЗА и уравнение состояния идеального газа.
- Конструктивные типы вакуумных насосов.
1. Введение.
При выборе вакуумного насоса (или компрессора) и оценке его пригодности для использования в той или иной технологии оперируют двумя главными характеристиками:
- ДАВЛЕНИЕ
- ПРОИЗВОДИТЕЛЬНОСТЬ
Вакуумный насос или компрессор, который в поиске у потенциального пользователя, должен, прежде всего, обеспечить требуемый уровень давления. Затем ставится задача получить это давление за определенный промежуток времени. Быстрота получения заданного значения давления определяется производительностью (pumping speed) вакуумного насоса. При этом газовые компрессоры нагнетают газы и формируют давления выше атмосферного. Вакуумные насосы генерируют давления ниже атмосферного, т.е. создают разрежение.
В этой статье речь пойдет о низком давлении, т.е. о ВАКУУМЕ, как об основной технической характеристике всех вакуумных насосов. Создание или генерирование устройством вакуума – это динамический процесс понижения атмосферного давления в объеме и во времени. При поисках и выборе вакуумного насоса по уровню вакуума обычно говорят о двух характеристиках вакуумного насоса, связанных с давлением:
- предельное остаточное давление (или предельный вакуум, ultimate pressure)
- рабочее давление (или рабочий вакуум, working pressure)
Предельное остаточное давление – это самое хорошее (высокое) значение вакуума, которое позволяет достигнуть конструкция этого вакуумного насоса. Важно понимать, что когда вакуумный насос достигает этого предельного значения вакуума, производительность откачки газов становится равной нулю, т.е. откачка прекращается, и в дальнейшем при работе насоса это значение предельного давления будет поддерживаться как некое достигнутое равновесное состояние системы «насос-откачиваемый объём».
Как правило, значение предельного остаточного давления достигается лишь при работе вакуумного насоса в режиме «сам на себя», т.е. при заглушенном входном патрубке. Это объясняется довольно просто: при подключении к насосу технологических объемов (емкости, трубопроводы, стыки, камеры и др.) всегда существуют течи (негерметичности) или явления газовой десорбции, которые не позволяют достичь в откачиваемом объеме максимальное значение вакуума, который способен создать сам насос.
Рабочее давление – это заданное значение вакуума, которое требуется обеспечить и поддерживать вакуумным насосом в той или иной технологии или техпроцессе.
При выборе вакуумного насоса его предельное остаточное давление должно быть немного лучше чем рабочее. Это как бы обеспечивает некий «запас прочности», т.е. гарантию того, что требуемое в техпроцессе давление будет достигнуто с помощью именно этого вакуумного насоса.
2. Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».
Давление газов в замкнутом объёме – это суммарное усилие, оказываемое ударами (толчками) постоянно движущихся молекул газов в стенки объёма, в результате их постоянного броуновского движения и сталкивания друг с другом и с твёрдыми стенками сосуда.
Основная единица измерения давления в системе СИ – это «Па» (Паскаль):
1 Па = 1 Н / м2 = 0,01 мбар [ 1 ]
Другие общепринятые единицы измерения давления и их соотношения приведены в Таблице 1:
Таблица 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Единица измерения давления | бар | мбар | мм. рт. ст. | м вод. ст. | Па | кПа | МПа | атм. | ат. | кгс/см2 | psi |
Бар (bar) | 1 | 1000 | 750 | 10,2 | 100 000 | 100 | 0,1 | 0,9869 | 1,02 | 1,02 | 14,5 |
Атмосферное давление – это давление, которое оказывает масса воздушного столба, как смесь газов, простирающихся на высоту более 1000 км от уровня поверхности земли и океана. При этом надо понимать, что чем выше от поверхности моря находится точка измерения этого атмосферного давления, тем атмосфера менее сконцентрирована, тем смесь газов реже (как бы их масса разбавляется в огромном увеличивающемся с высотой объёме) и, как следствие, давление этой смеси газов падает с подъёмом на высоту (см. Рис. 2). Почему? Просто так издавна утроена планета Земля, вокруг которой существует атмосфера, как газовая аура вокруг шара. Благодаря этой атмосферной ауре живут организмы и проистекают самые жизненные реакции веществ, постоянно потребляющие кислород, и растения, которые этот кислород постоянно вырабатывают и восстанавливают т.н. кислородный атмосферный баланс. Самые яркие примеры – это ветер, горение (как процесс окисления) и дыхание живых организмов, животных, людей.
Кривая изменения атмосферного давления до высоты 12 км над уровнем моря показана на Рис. 3.
Земная атмосфера. Принято считать, что это смесь 14 основных «земных» газов (см. Рис. 1), из которых три составляют львиную долю, в целом более 99% (азот – более 78%, кислород – более 20%, паров воды может быть более 1%).
Земная атмосфера делится на зоны по параметрам давления и температуры: тропосферу, стратосферу, мезосферу и термосферу (см. Рис. 4).
Вакуум – это всякое давление, величина которого ниже атмосферного. Нормальным атмосферным давлением в земных условиях принято считать абсолютное давление атмосферного столба на уровне поверхности мирового океана (моря). Это значение составляет 1013 мбар абс. «абс.» — здесь имеется в виду абсолютное давление, которое равно нулю в том случае, когда в объеме нет ни одной молекулы газов. Т.к. на поверхности земли, в её недрах и в атмосфере всегда есть газообразные вещества и пары жидких веществ, то абсолютный вакуум недостижим в земных условиях. Как бы быстро и хорошо не откачивались объемы современными вакуумными насосами, какими бы герметичными они бы ни были, в микроскопических шероховатостях стенок объемов всегда есть определенное количество молекул газов, которые невозможно удалить из этих микрорельефов. Кроме того, при давлении на стенки сосудов извне всегда есть проскакивающие, как бы просачивающиеся сквозь сито, внутрь молекулы газов, даже сквозь твёрдые кристаллические решетки металлов. В закрытых объёмах всегда есть явления газовой десорбции, т.е. выделения молекул газов со стенок объема вовнутрь, всегда есть микропоры и микротрещины, через которые газы проникают в зоны низкого давления. Всё это не позволяет получить абсолютный вакуум в земных условиях.
![]() | Факты: Альпы – это горный массив, пересекающий границы шести стран. В самом их сердце возвышается знаменитая гора Монблан, находящаяся на границе Франции и Италии. Сами Альпы представляют собой горную гряду, которая тянется по Европе почти 1200 км, в самом широком месте между итальянской Вероной и немецким Гармиш-Партенкирхеном имеет ширину около 260 км, занимая общую площадь в 190 тыс. кв. км. Альпы полностью или частично находятся на территории 8 стран. По доле общей площади государства, приходящейся на Альпы, эти страны располагаются следующим образом: Лихтенштейн (100%), Монако (100%), Австрия (65%), Швейцария (60%), Словения (40%), Италия (17%), Франция (7%), Германия (3%). |
![]() | Факты: Эверест, она же Джомолунгма – высочайшая вершина в мире, высота этой горы составляет 8848 метров. Эверест расположен в Гималайских горах, которые протягиваются по Тибетскому нагорью и Индо-Гангской равнине на территории нескольких стран: Непала, Индии, Бутана, Китая. Вершина Эвереста расположена на территории Китая, но сама гора находится на китайско-непальской границе. |
![]() | Факты: В гражданской и военной авиации очень важно поддерживать атмосферное давление внутри самолета, т.к. при поднятии его на любую высоту от поверхности Земли, давление за бортом падает, а это влечет за собой отток воздуха из салона самолета во внешнюю среду. Чтобы этого не происходило требуется выполнение двух основных условий нормального полета с лётчиком или пассажирами внутри: — корпус самолета должен быть герметичен (max отсутствие утечек воздуха наружу); Если в военных самолётах можно решить проблему утечек индивидуальными масками пилотов, то в гражданских самолётах, где много пассажиров, создают специальные автоматизированные системы поддержания атмосферного давления. |
Рис. 3. График снижения атмосферного давления с высотой над уровнем моря (от 0 до 12) км.
Рис. 4. Диаграмма распределения температуры воздуха в 4-х слоях атмосферного столба:
тропосфера (до 11 км), стратосфера (от 11 до 47 км), мезосфера (от 47 до 80 км), термосфера (свыше 80 км).
3. Градация вакуума по глубине (технические уровни вакуума).
Существует несколько методик по разбивке всей возможной шкалы низкого давления на различные интервалы (отрезки). Самые распространенные – это академическая градация и индустриальная градация.
Академический основан на оценке плотности (степени разрежения) газов по характеру движения их молекул в объёмах путем соизмерения длин пробега молекул между их столкновениями друг с другом и со стенками сосудов, т.е. соизмерения т.н. длин свободного пробега. Чем больше средняя длина свободного пробега молекулы, тем лучше вакуум. Так, например, если молекула газа в объёме успевает пролететь от стенки к стенке не соударяясь с другими молекулами, то это показатель того, что в таком объёме достигнут сверхвысокий вакуум.
Так как мы специализируемся на поставках оборудования для промышленных применений, то рассмотрим в этой статье индустриальный подход к разбивке вакуума на 4 класса (интервала). Этот метод соответствует европейскому стандарту DIN 28400. Классы вакуума приведены в Таблице 2.
Таблица 2 | |
---|---|
Технические уровни вакуума (classes) | Диапазон давлений (pressure range) |
ФОРВАКУУМ (rough vacuum) | (от 1000 до 1) мбар абс. |
СРЕДНИЙ ВАКУУМ (fine vacuum) | (от 1 до 10-3) мбар абс. |
ВЫСОКИЙ ВАКУУМ (high vacuum) | (от 10-3 до 10-7) мбар абс. |
СВЕРХВЫСОКИЙ ВАКУУМ (ultrahigh vacuum) | (10-7 и ниже) мбар абс. |
4. Базовые законы ФИЗИКИ ГАЗА и уравнение состояния идеального газа.
![]() | Закон Бойля-Мариотта.Закон Бойля-Мариотта был установлен английским физиком Робертом Бойлем в 1662 г. и независимо от него французским ученым Эдмом Мариоттом в 1679 г. и звучит так: Для данной массы газа при неизменной температуре произведение его давления p на объем V есть величина постоянная: pV = const [ 2 ] Этот закон также называется ЗАКОНОМ ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА. Как пример: при постепенном росте объёма определенного количества газа, чтобы сохранить его температуру неизменной, давление газа должно также постепенно снижаться. | |||
![]() | Закон Гей-Люссака.Закон, связывающий объем газа V и его температуру T, был установлен французским ученым Жозефом Гей-Люссаком в 1802 г. Для данной массы газа при постоянном давлении отношение объёма газа к его температуре есть величина постоянная. VT = const [ 3 ] Этот закон еще называют ЗАКОНОМ ИЗОБАРНОГО ПРОЦЕССА. Как пример: при постепенном нагреве определенного количества газа, чтобы сохранить давление неизменным, газ должен также постепенно расширяться. | |||
![]() | Закон Шарля.Закон, связывающий давление газа p и его температуру T, установлен Жаком Шарлем в 1787 году. Для данной массы газа в закрытом герметичном объёме давление газа всегда прямо пропорционально его температуре. pT = const [ 4 ] Этот закон еще называют ЗАКОНОМ ИЗОХОРОГО ПРОЦЕССА. Как пример: при постепенном нагреве определенного количества газа в закрытом объёме, также постепенно будет расти и его давление. | |||
Уравнение состояния идеального газа.Уравнение, позволяющее обобщить все три основных газовых закона термодинамики называется уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Оно дает взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа: давления p, объема V, температуры T,- и имеет вид: [ 5 ]
или при записи в другом виде: [ 6 ] Где: p – давление газа, Па (Н/м2) V – объём газа, м3 m – масса газа, кг μ – молярная масса газа R = 8,31 Дж/моль ∗ К – универсальная газовая постоянная, T – температура газа, °К (градусы абсолютной шкалы Кельвина). Под идеальным газом понимается газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосудов. Важно понимать, что все газовые законы работают для фиксированной массы (количества) газа. Законы эти хорошо работают для режимов вакуума и не приемлемы при очень высоких давлениях и температурах. |
5. Конструктивные типы вакуумных насосов.
Если говорить об уровне вакуума и его использовании в промышленных и исследовательских целях, то:
— в массовой мировой промышленности очень широко применяют форвакуум и средний вакуум;
— в более редких высоких технологиях используют форвакуум, средний и высокий вакуум;
— в лабораториях и исследованиях можно встретить все классы вакуума, в т.ч. и сверхвысокий.
Для получения всех классов в промышленности применяют различные конструкции вакуумных насосов, основные типы которых приведены в Таблице 3.
Таблица 3 | ||
---|---|---|
Тип насоса | Конструктивный вид | Диапазон рабочих давлений |
Мембранный вакуумный насос: — 1 ступень откачки | ![]() | Соответственно работа в диапазоне: — от 100 мбар абс. до атмосферного давления |
Вихревая воздуходувка | ![]() | от 600 мбар абс. до атмосферного давления |
Двухроторнвя воздуходувка | ![]() | от 400 мбар абс. до атмосферного давления |
Сухой пластинчато-роторный вакуумный насос | ![]() | от 150 мбар абс. до атмосферного давления |
Водокольцевой вакуумный насос | ![]() | от 33 мбар абс. до атмосферного давления |
Сухой кулачковый вакуумный насос | ![]() | от 20 мбар абс. до атмосферного давления |
Пластинчато-роторный вакуумный насос с рецикркуляционной смазкой | ![]() | от 0,5 мбар абс. до атмосферного давления |
Сухой спиральный вакуумный насос | ![]() | от 0,01 мбар абс. до атмосферного давления |
Сухой винтовой вакуумный насос | ![]() | от 0,01 мбар абс. до атмосферного давления |
2-х ступенчатый пластинчато-роторный вакуумный насос с масляной ванной | ![]() | от 0,0005 мбар абс. до атмосферного давления |
Сухой вакуумный насос Рутса (бустерный) | ![]() | от 0,001 до 25 мбар абс. |
Высоковакуумные насосы: — турбомолекулярные | ![]() | от 10-11 до 5 мбар абс. |
В этом разделе основной акцент сделан на насосы для получения форвакуума, т.к. это самая востребованная ниша рынка вакуумного оборудования, и не только в России и странах СНГ, а и во всем мире.
Следует также знать, что высоковакуумные насосы не могут работать без вакуумных насосов фор- и среднего вакуума, т.к. они стартуют в работу только с пониженных давлений (как правило, со среднего вакуума) и выхлоп у них должен происходить в зону вакуума, иначе высокий и сверхвысокий вакуум недостижим. Т.о. форвакуумные насосы и насосы среднего вакуума востребованы во всех отраслях промышленности, высокотехнологичных сферах и в научных исследованиях.
Источник
Виды вакуумных насосов, принцип работы и ремонт
Вакуум — фаза газа, при которой давление ниже атмосферного. Газ разрежается, когда вещество принудительно откачивают из прибора с ограниченным объемом. Устройство, предназначенное для таких целей, — вакуумный насос.
Вакуумные насосы используются для образования вакуума.
Область применения вакуумных насосов
Вакуумные насосы тратят мало энергии и имеют небольшие размеры. Благодаря им быстро получается разредить среду. Устройства используют в различных отраслях:
- химическая и нефтеперерабатывающая, чтобы поддерживать соответствующие условия для протекания реакции и разделения составов;
- фармацевтическая, чтобы быстро сушить продукцию;
- текстильная, чтобы сушить изделия без увеличения температуры;
- во время дегазации металлов и прочих материалов, когда создают детали с однородной структурой;
- пищевая отрасль — во время расфасовки продуктов из рыбы, мяса, а также молочных напитков;
- во время вакуумирования холодильной и прочей аппаратуры, у которой повышенные критерии к отсутствию влажности;
- для оптимальной работы автоматических конвейерных линий, где захватами выступают специальные присоски;
- в лабораториях производственных и научных отделов;
- в медицине во время использования дыхательных аппаратов, в кабинетах стоматологов;
- в полиграфии, когда требуется закрепить термопленку.
Вакуумная система в промышленности.
Принцип работы вакуумных насосов
Вакуум формируется, когда механическим способом удаляют соединения из закрытого пространства. Это можно осуществить разными методами.
Функционирование насоса струйного типа базируется на выносе молекул газа с паровой либо водяной струей, которые имеют большую скорость и вылетают из эжектора. Дополнительно подключаются по бокам патрубки, чтобы создавалось разрежение.
Принцип работы вакуумного насоса.
Достоинство такого механизма заключается в том, что в нем нет двигающихся элементов. Минусы — низкий коэффициент полезного действия и перемешивание соединений.
Наиболее популярным является механический вариант устройства. В нем основной элемент является вращающимся либо двигается возвратно-поступательно. При этом периодически создается внутри механизма пространство, которое заполняется газовой смесью из патрубка с дальнейшим его выталкиванием через отверстие выхода. Конструкции таких насосов могут быть разными.
Схема водоснабжения с использованием вакуумного насоса.
Основные разновидности вакуумных насосов
Во время производства устройств для формирования вакуума применяют детали из пластмассы и металлов, которые обладают устойчивостью к химическому влиянию перекачиваемых веществ. Кроме того, элементы конструкции должны обладать достаточной прочностью. Обязательно подгоняют все узлы, проверяют герметичность, чтобы поверхности не пропускали обратно газы.
Выделяют несколько типов насосов, которые используют для дома и других целей.
Водокольцевые
Водокольцевой тип вакуумного насоса представляет собой одну из разновидностей жидкостно-кольцевых устройств, которые используются, чтобы разрежать циркуляцию чистой воды.
Прибор имеет цилиндрическую форму и ротор с лопатками, который вращается с помощью вала, который смещен от центра. Перед тем как включать устройство, его наполняют жидкостью. Когда запускается двигатель, крыльчатка разгоняет ее по стенкам корпуса. Между водой и роторным механизмом формируется серпообразная зона вакуума. В нее направляется газ из патрубка. Лопатки направляют его вдоль вала, и он выходит через отверстие.
Подобные типы устройств используют еще для того, чтобы частично очищать газ, когда он активно контактирует с жидкостью. Дополнительно присутствуют приспособления для откачки воды.
Водокольцевой вакуумный насос.
Применение жидкости как рабочей поверхности дает следующие плюсы:
- Вода, когда вращается внутри устройства, не дает газу возвращаться.
- Все детали устройства, когда постоянно вращаются, омываются водой, так что уменьшается трение, снижается их температура.
- Подобный механизм редко нуждается в ремонтных работах и обладает долгим периодом эксплуатации. Кроме того, он потребляет немного электрической энергии.
- Контакт с газами, которые содержат капли жидкости и небольшие механические примеси, не влияет на состояние оборудования.
Последний факт особенно важен при применении подобных устройств для откачивания воздуха из емкостей, которые содержат влагу. Используют их в кондиционерах, холодильных установках перед тем, как заполнять их фреоном.
Пластинчато-роторные
Насос пластинчато-роторного типа имеет корпус в виде цилиндра. Он отшлифован внутри. Сам ротор располагается в нем, при этом оси у них не совпадают. В роторе есть специальные двигающиеся пластины. Они прижаты к корпусу пружинами, так что внутри имеется сектор с пустым пространством.
Когда включается двигатель, то газы начинают двигаться.В патрубке-приемнике всегда формируется разрежение, а в напорном механизме — избыток давления.
Чтобы трение у пластин уменьшалось, их делают из материалов антифрикционного типа, а также применяют специальные масла с малой вязкостью. У таких насосов повышенная восприимчивость к чистоте газа или жидкости, которые перекачиваются, так что требуется периодически осуществлять очистку конструкции.
Пластинчато-роторный вакуумный насос.
Мембранно-поршневые
У мембранно-поршневых вакуумных насосов главной деталью служит гибкая мембрана, которая связана с механизмом рычагов. Его делают из материалов композитного типа, которые обладают стойкостью к нагрузкам. Края мембраны фиксируются к корпусу, а центр будет выгибаться.
К достоинствам такого механизма относится возможность использовать пневматический привод для контакта со взрывоопасными веществами, долгий срок применения, легкость регулирования расходов, экономичность, высокая герметизация, отсутствие остатков смазки и пр.
Винтовые
Функционирование винтовых вакуумных насосов основывается на том, что газ либо жидкость вытесняются вдоль вращающегося винта. Конструкция включает 1-2 ротора винтовидного типа, привод и статор. Из-за высокого качества устройство является недешевым. К преимуществам относится то, что уровень шума невысокий и есть способность перекачивать среды, которые содержат механические включения.
Устройство винтового насоса.
Вихревые
Вакуумные устройства вихревого типа похожи на центробежные насосы и подобное оборудование. Конструкция включает колесо и лопасти, которые вращаются на валу. Отличие заключается в патрубке-приемнике. Он располагается снаружи корпуса, а не возле центральной оси.
Такие насосы просто использовать и легко ремонтировать. Но при этом специалисты указывают на то, что у них низкий коэффициент полезного действия. Кроме того, они восприимчивы к попаданию примесей механического типа.
Популярные производители
Существует множество производителей подобных насосов. Одним из самых популярных является Вакууммаш. Он производит устройства сухого механического типа, с масляными уплотнениями, водокольцевые, пароводянистые и пр.
Производитель ERSTEVAK выпускает устройства, которые формируют 1 мбар давления. Компания создает водокольцевые, вихревые и пластинчато-роторные механизмы.
Производитель BUSCH выпускает масляные и сухие устройства с разной производительностью и функциональностью. Ассортимент продукции — диффузные, турбомолекулярные, вихревые, жидкостно-кольцевые, пластинчато-роторные механизмы.
Ремонт вакуумного насоса
Ремонт вакуумного насоса – сложный технологический процесс, требующий от специалиста необходимой квалификации и опыта. Следует заметить, что устройства данного типа отличаются высоким ресурсом и надёжностью. Однако, во избежание непредвиденных сбоев и поломок, требуется проведение плановых профилактических осмотров агрегата и замены изношенных деталей.
Существует множество причин, по которым агрегат может выйти из строя, например, агрессивность среды, износ деталей, интенсивность использования, но, благодаря несложной конструкции агрегата, зачастую возможно произвести ремонт вакуумного насоса своими руками.
Распространённые виды неисправностей
Несмотря на надёжность и высокий ресурс вакуумного агрегата, как и любой другой технике, такому насосу требуется уделять внимание, а именно проводить профилактические осмотры, своевременно заменять изношенные детали. Самыми уязвимыми компонентами конструкции являются сальники, шланги и мембраны, поэтому этим деталям следует уделить особое внимание. Корпус же насоса может прослужить многие годы без появления дефектов.
Наиболее часто встречающимися неисправностями вакуумного насоса являются:
- механический износ эластичных деталей, таких как сальники и мембраны;
- устройство не выключается;
- неравномерная интенсивность потока жидкости;
- самопроизвольное включение насоса;
- агрегат выходит из строя вследствие нехватки масла.
Механический износ деталей
Интенсивная эксплуатация насоса на предельных режимах, старение полимеров, естественное истирание расходных элементов приводит к механическому износу деталей, что приводит к выходу вакуумного насоса из строя.
Большая часть производителей насосного оборудования поставляют с агрегатом специальные ремкомплекты, которые позволяют устранить поломку в кратчайшие сроки, а также отличаются универсальностью. К примеру, в автомобилестроении широко применяется ремкомплект вакуумного насоса Т4 модели, ставший популярным среди автомобилистов благодаря хорошему соотношению цена-качество и надёжности. В состав комплекта входят клапаны насоса, мембрана и различные элементы крепления. Это те детали, которые наиболее подвержены износу при работе устройства, однако также в некоторые ремкомплекты входит помпа.
Проблемы с включением и выключением агрегата
Если насос самопроизвольно включается, можно сделать следующие выводы:
- Неисправен датчик давления – в таком случае требуется его замена, данный элемент не подлежит ремонту;
- при работе оборудования происходит захват воздушной массы – требуется тщательный осмотр системы на предмет нарушения герметичности, а также проверить уровень жидкости там, где происходит её забор;
- нехватка давления в баке – информация о текущем давлении отображается на манометре, который входит в состав изделия;
- требуется замена резиновой мембраны. Определить неисправность можно, нажав на ниппель в заднем отсеке бака – если выходит жидкость, мембрана неисправна.
Эти неисправности в работе оборудования также являются причиной неравномерной подачи жидкости.
Как выглядит рабочая мембрана и изношенная.
Плохое качество перекачиваемой жидкости или неотрегулированное реле может вызвать проблему с отключением насоса: неисправное изделие может производить перекачку жидкости, даже не уменьшая производительность, однако не выключаться, когда это требуется.
Если речь идёт о системе водоснабжения дома, то причина может быть в перенасыщении воды кальценированными солями, а при работе автомобильного вакуумного насоса – в наличии инородных фракций, которые забивают отверстие регулирующего реле. Если же даже прочистка отверстия реле и его регулировка не решает проблему, то следует обратиться к профессионалам для проведения тщательной диагностики и ремонта насоса.
Также распространённой является проблема с включением насосного оборудования из-за некорректной подачи электропитания, либо загрязнения контакта датчика. В первом случае, при проблемах с электропитанием насоса, следует передать решение проблемы профильным специалистам, а во втором случае можно самостоятельно почистить контакт. Неисправность электродвигателя также является причиной проблемы с включением изделия, данная неисправность легко определяется характерным запахом гари. К сожалению, двигатель не подлежит ремонту в большинстве случаев, а значит, потребуется его замена.
Повреждение вакуумного насоса из-за нехватки смазочного масла
На скорость износа насоса в значительной степени влияет качество масла и маслоснабжение. Поэтому недостаток маслоснабжения и плохое качество смазочного масла является одной из самых распространённых причин выхода агрегата из строя. Объясняется это тем, что при нехватке масла в системе может возникнуть негерметичность, вследствие чего не достигается необходимое разрежение. Старое и уже отработанное масло содержит много загрязнений, приводящих к преждевременному износу вакуумного насоса. Для более подробного ознакомления с темой ниже представлено видео о важности масла в системе насоса.
Ремонт пластинчато-роторных вакуумных насосов
Работу с герметичным пространством обеспечивают агрегаты пластинчато-роторной схемы, они классифицируются на модели с применением масляного уплотнителя и устройства сухого типа. Масляные вакуумные насосы требуют частого технического обслуживания, предусматривающего регулярную замену смазочного масла, фильтра масляного тумана, а также подшипников, уплотнителя и роторных лопаток.
Устройства сухого типа работают без смазочного масла, поскольку рабочие пластины насоса выполнены из антифрикционных материалов, что сокращает частоту замены деталей до двух лет эксплуатации.
Типичной проблемой для пластинчато-роторных насосов является загрязнённое или окисленное масло, выработавшее свой ресурс, что вызывает ухудшение его смазывающих свойств. На мощности установки негативно сказывается наличие воды в масле, поскольку это приводит к образованию пара при откачке. Уменьшить процессы окисления при эксплуатации позволяет применение силиконовых масел.
Как правило, сервисный ремонт пластинчато-роторного вакуумного насоса следует проводить каждые 3000 часов, включая замену смазочного масла. Рабочие лопатки необходимо проверять на наличие дефектов, например, трещин, и, в случае значительного износа, производить их замену.
Типичные неисправности устройства данного класса во многом совпадают с общими для вакуумных насосов, описанными выше, однако есть и свои особенности:
- Присутствие сильного шума при эксплуатации;
- Заклинивание деталей механизма;
- Чрезмерный нагрев в процессе работы
Пластинчато-роторный вакуумный насос.
Заклинивание деталей устройства возможно при проникновении внутрь инородных частиц, а также коррозионных процессов от оседания конденсата.
К причинам увеличения шума работы можно отнести пониженную мощность двигателя, дефектами пластин, подшипников, а также в случае применения неподходящего вида масла.
Перегрев агрегата происходит вследствие нарушения вентиляции, появления засора в воздухозаборном устройстве, а также клапанах или фильтрах, низкий уровень смазочного масла. Помимо этого, высокая температура окружающей среды приводит к ускорению перегрева насоса.
Следует отметить, что, во избежание полного выхода устройства из строя, лучше доверить ремонт сложного технического устройства профессионалам.
Ремонт водокольцевых вакуумных насосов
Отличительной чертой водокольцевых вакуумных насосов является простота и надёжность конструкции, в основе которой лежит принцип разряжения воздушной и газовой среды при помощи водного кольца. В конструкции отсутствуют трущиеся детали, что в свою очередь обеспечивает хорошие шумовые и вибрационные характеристики, а также значительно снижает общий износ деталей. В насосах данного типа основные рабочие детали не соприкасаются с корпусом. Также данные устройства маловосприимчивы к попаданию абразивных частиц и обеспечивают высокую долговечность компонентов.
Ремонт водокольцевого вакуумного насоса.
Несмотря на все достоинства данного типа агрегатов, они тоже подвержены различным нарушениям работы и неисправностям:
- Протечка рабочей жидкости;
- Нарушения в формировании вакуума;
- Повышение шумовых и вибрационных воздействий при работе вакуумного насоса.
Нарушение работы изделия может быть связано с недостаточным количеством воды в камере насоса. Решением этой проблемы может быть восстановление необходимого уровня воды, необходимого для нормальной эксплуатации. Также препятствием в работе вакуумного насоса может быть загрязнение рабочих механизмов. Устранить данную проблему можно либо продувкой системы сжатым воздухом или разборкой и непосредственной чисткой каждого агрегата.
Недостаточность в формировании вакуума может быть вызвана износом уплотнительных колец, вследствие чего воздушная смесь попадает в рабочую камеру насоса. Для решения этой проблемы нужно проверить крепление сальников или заменить уплотнители.
Более серьёзный ремонт подобного типа агрегатов должен производиться высококвалифицированными специалистами.
Рекомендации по техническому обслуживанию и ремонту
- В первую очередь, перед тем, как осуществлять диагностику и поиск неисправностей вакуумного насоса, обязательно нужно полностью отключить систему, поднять насос из воды. Проверяется герметичность прибора и его трубопроводов, а также исправность функционирования обратного клапана.
- Во-вторых, следует осмотреть стыки конструкции на предмет попадания инородных предметов, таких как листья, грунт, песок и так далее. Инородные тела могут стать причиной неисправности обратного клапана.
- Производится проверка трубопровода, находящегося между насосом и источником воды. Если вода отсутствует