Какое давление в стволе пушки

Давление в стволе: как оно измерено

Необходимость определения предельной навески пороха, хотя и возникла, очевидно, вместе с огнестрельным оружием, достаточно долго критичной не была. Сказывалось то, что скорость горения дымного пороха мало зависит от давления, а значит, «пересып» был критичен только при грубейших ошибках, тем более в гладкоствольном оружии.

А вот во второй половине XIX века сначала появление нарезного оружия, а затем и бездымного пороха изменило ситуацию кардинально. Сопротивление движению пули, вызванное нарезами (особенно в начальный момент выстрела, когда пуля только начинала деформироваться), растущие требования к скорости полета пули увеличили давление в стволе, а для бездымных порохов, с их нелинейной зависимостью скорости горения от давления (способной вылиться в детонацию), «пересып» уже был крайне опасен.

Изучение процессов, происходящих внутри ствола, требовало соответствующих способов замера давления в нем. Обычные манометры для таких давлений, к тому же воздействующих сотые доли секунды, не подходили категорически.

Старейший из существующих и поныне способов измерения давления — крешерный. Он прост как молоток: пороховые газы во время выстрела через стальной поршень осаживают калиброванный медный столбик (крешер), по изменению высоты которого и определяется давление.

Но в простоте и кроется проблема. Крешер калибруется под статическим давлением (проще говоря — обжимается мощным гидравлическим прессом), а при выстреле давление меняется динамически и воздействует на него кратковременно. То есть крешерное измерение не только не передает всю картину изменения давления, важную для отображения процессов горения пороха в стволе, но и занижает давление. Чем больше давление и чем короче оно действует, тем погрешность крешерного измерения выше — она доходит до 20%.

В отличие от устаревшего крешерного метода измерения, пьезоэлектрический (основной на текущий момент) значительно совершеннее. Кристалл кварца, установленный в датчике, практически лишен инерции съема данных, позволяет получать данные в режиме реального времени — изначально осциллограммой, а теперь и напрямую на компьютер.

Именно переход на пьезоэлектрический метод измерения позволил значительно усовершенствовать бездымные пороха, поскольку испытатели получали полную и точную картину процессов внутри ствола.

Пьезоэлектрический датчик, что немаловажно, не обязательно должен вворачиваться в ствол: он может быть и накладным (хотя и с неизбежным огрублением показаний), то есть работать на «живом» оружии без его малейших модификаций.

Погрешность пьезоэлектрического метода измерений на порядок ниже, чем при использовании крешера — в пределах 1,5-2%. Именно «пьезоэлектрическое» давление сейчас указывается стандартами и для боеприпасов, и для оружия. Отсюда возникает путаница: старое оружие под нитропорох, для которого указывается «крешерное» давление, кажется несовместимым с современными боеприпасами своего калибра, для которых стандартом указано «пьезоэлектрическое». И не обязательно старое — например, ижевские «сорок третьи» под патрон 12/70 до недавних пор клеймились на 650 атмосфер, несмотря на нанесенное рядом клеймо CIP. Оружие же этого калибра, согласно CIP, должно иметь максимальное рабочее давление в 740 атмосфер. Да и сама заводская инструкция к ружью говорит прямо — «ружья с длиной патронника 70 мм предназначены для использования любых патронов с длиной гильзы до 70 мм, за исключением патронов с маркировкой «Max. 1050 bar». Парадокс? Отнюдь — «атмосферы» на стволах проставлены по крешерному методу. Впрочем, это дошло и до ихмеховцев — например, у автора на ружье 2017 года вообще никаких упоминаний давления нет вовсе.

Источник

аллистика

Первый,
или основной период (Пиродинамический период)

от
момента окончания врезания ведущих поясков до момента окончания
горения пороха.

Давление
пороховых газов сначала быстро нарастает в увеличивающемся объёме,
а затем, пройдя максимум, падает, скорость снаряда в этот момент
составляет (0,8 — 0,9) .
В течение периода газы совершают большую часть работы.

В этом периоде горение пороха происходит в быстро изменяющемся объёме,
так как снаряд под давлением непрерывно возрастающего количества
газов движется по каналу ствола.

В первый промежуток времени нарастание количества газов идёт значительно
быстрее увеличения объёма заснарядного пространства, поэтому и давление
быстро повышается, достигая наибольшей величины, максимума
(Рm)
.

Например,
при табличных условиях стрельбы

максимальное
давление
,возникающее

в
стволе 122-мм гаубицы обр. 1938 г. Рmax
= 2350 кг/дм2;

у
стрелкового оружия под патрон обр. 1943 г. Рmax
= 2810 кг/дм2,

а
под патрон с пулей обр. 1908 г. — Рmax
= 2850 кг/дм2,

выстрел
ВОГ-25б* — Рmax ≈ 1000
кг/дм2.

Максимальное
давление при выстреле из стрелкового оружия развивается при прохождении
пулей 4 — 6 см пути, а в артиллерийских системах при прохождении
снарядом 20 — 45 см.

Однако
быстрое увеличение давления вызывает значительное ускорение движения
снаряда в канале ствола, т. е. значительное увеличение заснарядного
пространства.

Поэтому, несмотря на приток новых газов, давление начинает падать
до конца горения пороха (Рк),
а скорость снаряда все время возрастает, достигая значения .

Второй,
или термодинамический период —

от
момента окончания горения порохового заряда до момента вылета
из канала ствола.

Давление
газов падает, скорость снаряда достигает скорости .

С началом этого периода приток новых газов прекращается, но так
как газы обладают большим запасом энергии, то продолжается их расширение
и, как следствие этого, увеличение скорости движения снаряда.

В
этот период давление убывает от Рк
до дульного Рд.

Величина дульного давления у различных образцов оружия колеблется
в пределах 300 — 600 кг/см2.

Например,

у
карабина Симонова и ручного пулемета Дегтярева — Рд=390
кг/см2,

у пулемета Горюнова — 570 кг/см2,

у
76-мм дивизионной пушки около 600 кг/см2,

выстрел ВОГ-25б — Pk =988,6 кг/см2.

Скорость
снаряда у дульного среза может быть меньше табличной начальной скорости.

В стрелковом оружии полное сгорание порохового заряда происходит
к тому моменту, когда пуля находится вблизи дульного среза, а в
системах с более коротким стволом (например, пистолет) полного сгорания
пороха не происходит, т. е. второй период выстрела фактически отсутствует.

* ВОГ-25б — бесшумный выстрел.

Источник

О давлении газов и начальной скорости снарядов

При пироксилиновых порохах скорость горения и максимальное давление могут меняться в очень широких пределах, начиная от так называемых затяжных выстрелов и даже отказов до детонации, когда весь заряд сразу превращается в газы.

фото: Fotolia.com

При затяжных выстрелах дробь падает на землю в нескольких десятках метров от дула.

При отказах снаряд остается в гильзе или застревает в канале стволе. Если не обратить на это внимания, зарядить ружье снова и выстрелить, то ствол в большинстве случаев будет разорван.

Наоборот, при очень быстром сгорании заряда и стремительном нарастании давления как ствол, так и коробка разрушаются прежде, чем снаряд успел стронуться с места.

Искусство снаряжать патроны состоит в том, чтобы снаряду, масса которого соответствует калибру и типу ружья сообщить начальную скорость порядка 360-380 м/сек, сохранив при этом давление газов в допустимых пределах. Это достигается строгим соблюдением установленных заводом-изготовителем рекомендаций и рецептур.

К сожалению, многие охотники, да и стрелки-спортсмены, в надежде повысить дальнобойность своих ружей существенно отступают от рекомендуемых рецептов. При этом в некоторых случаях максимальное давление достигает критического уровня и становится опасным не только для ружья, но и для самого стрелка.

Особую опасность представляют отдельные выстрелы, при которых максимальное давление оказывается значительно выше среднего значения для данной серии патронов.

Читайте также:  Какие цифры являются нормой артериального давления

Приводимые ниже зависимости давлений и скоростей от качества боеприпасов и рецептуры снаряжения патронов заимствованы нами в основном у известного французского исследователя боя охотничьих ружей генерала Журнэ.

Читайте материал «Как выбрать нужный порох: Сокол или Сунар»

Капсюли одной и той же парии дают пламя различной интенсивности, в результате чего колебания давлений при пироксилиновых порохах достигают 50-100 кг/см2. В то же время начальные скорости при более сильных капсюлях возрастают всего на 15-30 м/сек. При дымных порохах, которые воспламеняются значительно легче бездымных, давления изменяются в пределах 3-5 кг/см2, а начальные скорости — в пределах 2-4 м/сек.

Если дно гильзы имеет коническую или полусферическую форму, пламя капсюля охватывает пороховой заряд полнее, чем при плоской форме. Если в первом случае непоспламененными остаются от 5 до 10 % пороховых зерен, то во втором — от 15 до 20 %. В результате при полусферической форме дна давление при тех же навесках пороха возрастает на 20-30 кг/см2, а начальные скорости дроби — на 10-15 м/сек.

Гильзы, наружный диаметр которых всего на 0,1 мм меньше нормального для данного патронника, снижают давление на 20-30 кг/см2, а начальную скорость на 6-10 м/сек. Использование длинных по патроннику гильз — длиной 70 или 76 мм в патронниках 65 мм — в зависимости от длины переходного конуса может повысить давление на 80-100 кг/см2.

фото: Fotolia.com

Наоборот, стрельба короткими патронами при длинных патронниках опасности не представляет. Более того, некоторые ружья при длинных патронниках и коротких патронах дают более постоянный бой (Лампель, 1940).

Изменение навески заряда на 0,1 г вызывает изменение давления при бездымных порохах на 25-40 кг/см2, а при дымных — на 3-10 кг/см2. Начальные скорости при этом соответственно изменяются в границах 10-20 м/сек и 3-7 м/сек.

Значительное влияние на давление и начальную скорость оказывает температура порохового заряда перед выстрелом. Изменение температуры на 20оС приводит к изменению давления на 50-100 кг/см2 и начальных скоростей снаряда на 10-15 м/сек.

Читайте материал «Канал ствола и дульное устройство: развеем споры»

Поэтому в зимнее время, точнее, при сильных морозах, навески пироксилиновых порохов можно увеличивать на 0,1 и даже 0,2 г по сравнению с навесками для ранней осени. Хотя на дымном порохе его температура так сильно не сказывается, для зимних охот заряды увеличивают на 0,5 г.

Сжатие бездымных порохов пыжами более чем на 6-10 кг приводит к повышению давления, причем при рыхлых, слабожелатинизированных сортах увеличение давления может достичь даже 200 кг/см2. Начальные же скорости возрастают при этом всего на 10-20 м/сек. Дымный порох относится к сжатию пыжами безразлично, но заколачивать пыж молотком, как это делали наши прадеды, — не следует.

Прокладки, которые кладут на порох под войлочный пыж, также оказывают влияние как на давление, так и на начальную скорость. При полном отсутствии прокладки и при войлочном пыже давление падает более чем на 100 кг/см2 и скорости уменьшаются.

Напротив, при увеличении толщины и жесткости прокладки как давление, так и начальная скорость повышаются. Введение на порох обтюрирующей пластмассовой прокладки может повысить давление бездымного пороха на 80-100 кг/см2. Поэтому при использовании таких прокладок-чашечек следует уменьшать заряды на 0,2 г.

Пороховые пыжи из плотных и упругих материалов, например, из подметочной кожи или из каучука способны повысить максимальное давление выше нормы на 300-500 кг/см2, тогда как начальная скорость возрастает только на 20-30 м/сек.

Заметное увеличение давления вызывают и войлочные пыжи, осаленные не на 1-2 мм, а на всю глубину. Чем тяжелее пороховой пыж, тем выше давление и ниже начальная скорость и, наоборот, чем легче пыж, тем ниже давление и больше скорость снаряда.

Пороховые пыжи из пробки и древесноволокнистой массы снижают давление и начальные скорости. Сделанные из картона пыжи-чашечки, состоящие из двух половинок, надетых одна на другую, по данным Черкая, повышают при порохе «Сокол» давление на 200-300 кг/см2.

Поскольку же при дымном порохе и таких же пыжах давления остались нормальными, можно думать, что отмеченные Черкаем скачки давления были вызваны не пыжами, а чем-то другим, возможно, сжатием заряда. Испытывал такие пыжи и английский исследователь Буррард, причем с различными сортами бездымных порохов, и пришел к выводу, что они заметно давления не повышают.

фото: Fotolia.com

Увеличение или уменьшение навески дроби на 1 г влечет при пироксилиновых порохах изменение давления в пределах 15-30 кг/см2. При дымном порохе изменение давления бывает выражено значительно слабее. Что же касается начальных скоростей, то они при увеличении массы снаряда на 1 г уменьшаются на 4-7 м/сек, как при бездымных, так и при дымных порохах.

Читайте материал «Как самому сделать качественный патрон»

Максимальное давление зависит в первую очередь от величины давления форсирования, а это последнее — от сопротивления заделанного дульца гильзы. Если при завальцовке бумажной гильзы обычной закруткой поверх дробового пыжа-прокладки останется 5 мм свободного дульца [1], то давление форсирования останется в норме.

Естественно, что при пластмассовых гильзах те же 5 мм завальцованного дульца создадут значительно большее сопротивление. При запрессовке дульца способом «звездочка» над снарядом должно оставаться больше свободного дульца, и давление форсирования повышается на 15-20 %.

При сильно уменьшенных снарядах дроби (например, если ружье имеет для своего калибра малую массу) нормальное сопротивление дульца может оказаться недостаточным для создания нужного давления форсирования.

В результате резкость боя будет неудовлетворительной. В таких случаях глубокая завальцовка дульца гильзы может поднять максимальное давление на 100-150 кг/см2 и повысить начальную скорость на 40-50 м/сек (Фонтено).

Читатель мог обратить внимание на то, что очень часто резкий скачок максимального давления сопровождается незначительным повышением начальной скорости. Происходит это за счет того, что среднее давление на протяжении канала изменяется очень мало.

В аккуратно и с умом снаряженных патронах все перечисленные факторы носят случайный характер. Другими словами, нельзя предугадать, в какую комбинацию они сложатся при каждом выстреле. Однако в большинстве случаев одни факторы способствуют увеличению давления и скорости, а другие — их уменьшению.

Читайте материал «О непростом вопросе обтюрации»

В результате условия выстрела как бы уравновешиваются, в силу чего баллистические показатели остаются в заданных границах.

На величину максимального давления пороховых газов влияют и конструктивные особенности самого ружья. Так, от силы удара бойка и формы его «жала» зависит сила пламени капсюля-воспламенителя. При уменьшении диаметра патронника на 0,1 мм давление возрастает на 20-30 кг/см2. Сказывается и длина переходного конуса.

[1] В Англии принято оставлять 6 мм свободного дульца для завальцовки.

Кирилл Мартино
18 августа 2017 в 17:26

Источник

Ствол / КАК УСТРОЕНО ОРУДИЕ / Книга: Артиллерийское орудие / Библиотека
Арсенал-Инфо.рф

Ствол

Часть орудия, которая при выстреле придает снаряду направление полета, поступательную скорость и вращательное движение, называется стволом (рис. 12).

Ствол

Рис. 12. Ствол.

Ствол представляет собой трубу, закрытую с одного конца затвором. Передняя часть ствола называется дульной, задняя — казенной. На казенную часть навинчивается казенник. Канал ствола разделяется на камору (патронник) и нарезную часть, соединяемые между собой коническим скатом.

На дульном и казенном срезах трубы имеется по две пары взаимно перпендикулярных рисок. Если аккуратно наклеить по ним нити, то образуется два перекрестия. Центры перекрестий соответственно называются центром дульного и казенного срезов. Прямая линия, соединяющая центры дульного и казенного срезов, определяет положение оси канала ствола.

Основным недостатком гладкоствольных орудий, как вы помните, являлось то, что они обладали незначительной дальнобойностью и малой меткостью. Шаровые снаряды — бомбы, вкладываемые с дула, должны были свободно входить в ствол. При этом образовывался зазор между снарядом и стенками канала ствола; в этот зазор при выстреле прорывались пороховые газы, в результате чего начальная скорость шаровых снарядов была мала. Кроме того, эти снаряды быстро теряли скорость при полете в воздухе, ввиду того, что они встречали большое сопротивление воздуха. Все это приводило к тому, что дальность стрельбы была невелика. Поэтому артиллеристы давно стремились заменить шаровые снаряды продолговатыми с заостренной головной частью для уменьшения силы сопротивления возе духа.

Однако, если выстрелить таким снарядом из гладкоствольного орудия, то снаряд будет кувыркаться в воздухе. Что же нужно сделать, чтобы снаряд не кувыркался?

Для этого на поверхности канала ствола делаются желобки, идущие обычно по винтовой линии слева вверх направо. Эти желобки называются нарезами. Часть поверхности канала ствола, заключенную между двумя нарезами, называют полем нареза (рис. 13).

Ствол

Рис. 13. Калибр, нарез, поле.

На снарядах делаются ведущие пояски из металла более мягкого, чем металл ствола (обычно из меди); пояски прочно закреплены на снарядах. Когда снаряд под действием пороховых газов при выстреле начинает двигаться по каналу ствола, ведущий поясок врезается в нарезы, и так как они идут по винтовой линии, то снаряд поворачивается вокруг своей оси. Таким образом, снаряд, помимо поступательного движения, получает еще и вращательное.

Понять, почему вращательное движение сообщает снаряду устойчивость в воздухе, увеличивает дальность полета и заставляет снаряд лететь вперед головной частью, нам поможет гироскоп.

Гироскоп представляет собой несколько видоизмененный обыкновенный волчок.

Предположим, что снаряд, получивший в канале орудия быстрое вращение, совершает полет в безвоздушном пространстве, где сила сопротивления воздуха отсутствует. Быстро вращающийся снаряд можно рассматривать как свободный от внешних воздействий гироскоп, к центру тяжести которого приложена единственная сила — вес. Допустим, что при выстреле оси канала ствола придали угол возвышения, то есть дуло ствола было приподнято кверху. Такой же угол наклона получит при выстреле из орудия и ось продолговатого снаряда, вращающегося вокруг своей оси. Во все время полета продольная ось снаряда-гироскопа будет сохранять то направление, которое она имела при вылете из канала ствола.

Под действием силы тяжести снаряд будет падать на землю. Такое положение снаряда невыгодно артиллеристам. Для того, чтобы пробить встречаемое препятствие, снаряд должен попасть в него головной частью, а в рассмотренном случае он ударится о преграду боком.

Обратимся теперь к действительным условиям стрельбы. В этом случае на быстро вращающийся вокруг своей оси артиллерийский снаряд действует сила сопротивления воздуха (рис. 14).

Ствол

Рис. 14. Силы, действующие на снаряд, летящий в воздухе.

Опять воспользуемся для опыта гироскопом. При быстром вращении маховика ось гироскопа сохраняет неизменное положение в пространстве. Для исследования движения вращающегося снаряда сообщим маховику быстрое вращение. Чтобы представить себе действие силы сопротивления воздуха на снаряд, надавим пальцем или палочкой на ось гироскопа (рис. 15).

Ствол

Рис. 15. Гироскоп.

При быстром вращении маховика ось вовсе не будет изменять своего направления, как это было бы при невращающемся маховике. Вместо этого ось гироскопа начнет медленно поворачиваться так, что все точки этой оси будут двигаться по окружности, а сама ось начнет описывать фигуру, напоминающую правильный конус. Установим далее гироскоп так, чтобы его ось была почти горизонтальна, и снова приложим усилие к концу оси. Мы убедимся в том, что ось гироскопа по-прежнему, не опрокидываясь, будет описывать конус, но более узкий, чем ранее, мало отклоняясь от линии горизонта. Результаты такого опыта показывают, что ось вращающегося гироскопа под действием усилия не увеличивает своего первоначального наклона, гироскоп не опрокидывается и конец его оси остается вблизи от линии горизонта.

Если теперь вместо гироскопа, к оси которого мы приложили усилие, будем рассматривать вращающийся снаряд, к оси которого приложена сила сопротивления воздуха, то мы увидим, что такой снаряд не будет кувыркаться в воздухе и его вершина, описывая конус вокруг касательной к траектории в данной точке, во все время полета останется близкой к траектории. Положение того «послушного» снаряда (рис. 16) вполне удовлетворяет артиллеристов: вращающийся снаряд устойчив в полете и ударяется о преграду заостренной головной частью.

Ствол

Рис. 16. Полет вращающегося снаряда в воздухе: а — ось снаряда описывает конус; б — вершина снаряда близка к траектории.

Меткость стрельбы становится значительно большей.

При выстреле пороховые газы давят внутри канала ствола по всем направлениям (рис. 17): на дно снаряда, на стенки и на дно канала ствола, стремясь изменить его форму и размеры.

Ствол

Рис. 17. Силы, действующие на снаряд и на ствол орудия при выстреле.

Но при давлении в толще стенок ствола возникают упругие силы, которые сопротивляются действию пороховых газов.

Давление пороховых газов, умноженное на площадь дна снаряда, представляет собой силу, приложенную к центру снаряда и направленную в сторону выстрела.

Эта сила заставляет снаряд двигаться вперед. Сила, действующая на дно ствола, стремится вырвать дно или разорвать ствол в поперечном сечении. При достаточной прочности ствола эта сила производит откат орудия.

Вследствие волнообразного движения газов в заснарядном пространстве давление газов на стенки ствола в различных точках неодинаково. Разделим внутреннюю поверхность ствола на небольшие участки. Будем считать давление в пределах каждого участка одинаковым. Умножим давление на каждом участке на площадь этого участка. Мы получим силы, направленные перпендикулярно к внутренней поверхности канала ствола. Эти силы стремятся разорвать ствол в продольном направлении.

Таким образом, в результате действия всех этих сил при недостаточной прочности ствола может произойти поперечный или продольный разрыв его.

Для того, чтобы ствол надежно сопротивлялся поперечному разрыву, нужно увеличить толщину его стенок, При этом, чем толще они будут, тем ствол будет прочней. Но достаточно ли этого для прочного сопротивления ствола продольному разрыву? Нет, недостаточно. Опытом установлено, что увеличение толщины стенок свыше одного калибра нецелесообразно, так как это утяжеляет ствол и ведет к нерациональному использованию металла.

Для того, чтобы уяснить действие давления газов на поверхность стенок канала ствола, проделаем следующий опыт. Возьмем плоское резиновое кольцо (рис. 18), начертим несколько концентрических окружностей на равных расстояниях одна от другой.

Ствол

Рис. 18. Опыт с резиновым кольцом.

Если в канал кольца будем вдвигать деревянный конус, то легко заметим, что диаметры окружностей, прилегающих к каналу, увеличатся в значительно большей степени, чем диаметры окружностей, начерченных ближе к наружной поверхности.

Если мы будем продолжать вдвигать конус, то сначала начнут рваться внутренние слои, а уже после них — наружные.

Этот опыт наглядно показывает, что слои принимают не одинаковое участие в сопротивлении растяжению: внутренние — больше, наружные — меньше. При достаточной толщине кольца возможно, что внутренний слой разорвется, а наружный слой не разорвется. Ствол, в котором произойдет разрыв внутреннего слоя, уже не годится для дальнейшей стрельбы.

Подобные явления происходят и в стенках ствола орудия.

Таким образом, вопрос увеличения сопротивления ствола продольному разрыву не мог быть разрешен только путем увеличения толщины стенок ствола.

Необходимо было создать такую конструкцию ствола, при которой все слои металла были бы равномерно напряжены, а напряжения, возникающие на его внутренней поверхности уменьшены. Этого можно достигнуть, составляя ствол из отдельных слоев. Такие стволы называются скрепленными.

Процесс скрепления состоит в следующем: берут две трубы со стенками равной толщины (рис. 19).

Ствол

Рис. 19. Идея скрепления ствола.

Внутренний диаметр одной трубы несколько меньше наружного диаметра другой. Нагреем большую трубу до температуры 400–450 градусов, наденем ее на меньшую трубу и дадим остыть составной трубе- При остывании наружная труба будет стремиться принять свои первоначальные размеры, то есть она начнет сжиматься. Ее внутренний диаметр будет уменьшаться и сжимать внутреннюю трубу. Но так как внутренняя труба будет оказывать сопротивление, то наружная не примет своих первоначальных размеров. Таким образом, после охлаждения до нормальной температуры наружная труба окажется несколько растянутой, а внутренняя — сжатой. Такое состояние смежных слоев, где внутренний слой сжат наружным, называется взаимным натяжением.

До выстрела в наружной трубе наиболее растянутыми будут внутренние слои, а наименее — наружные. Что касается внутренней трубы, то ее слои будут находиться в сжатом состоянии, при этом наружные слои будут менее сжаты, а внутренние — более сжаты.

При выстреле под давлением пороховых газов внутренняя труба вначале приходит в нормальное состояние, а затем начинает растягиваться вместе с наружной трубой. С этого момента внутренняя и наружная трубы сильнее сопротивляются давлению пороховых газов. Ясно, что при этом в канале такого ствола может быть допущено большее давление, чем в сплошном стволе той же толщины.

Такое расположение слоев металла позволяет увеличить допустимое давление в канале ствола по сравнению с нескрепленным стволом. Составив ствол орудия не из двух, а из четырех, пяти или более слоев, мы можем при заданном допускаемом давлении уменьшить вес ствола или при данном весе — увеличить допускаемое давление в канале ствола.

Следовательно, при данной толщине ствола сопротивление его давлению пороховых газов растет с увеличением числа скрепляющих слоев; скрепленные стволы, имеющие такое же сопротивление, как и однослойные, будут иметь значительно меньшую толщину стенок, и из двух скрепленных стволов с одинаковой толщиной стенок будет больше сопротивляться давлению пороховых газов тот, который имеет большее число скрепляющих слоев.

Вследствие того, что во время выстрела давление пороховых газов по длине ствола неодинаково, скрепление распространяется на ту часть ствола, в которой ожидается наибольшее давление. Начиная с сечения ствола, в котором должно находиться дно снаряда в момент конца горения порохового заряда, и далее до дула число скрепляющих слоев можно уменьшить.

Скрепление орудийных стволов может быть произведено при помощи колец, проволоки, кожуха, путем самоскрепления (автофретирование) и смешанным способом.

Увеличение прочности ствола не устраняет все же быстрого износа поверхности канала ствола.

Износ поверхности канала ствола влечет за собой потерю боевых качеств всего орудия, хотя остальные механизмы и агрегаты его еще совершенно не изношены. Для того, чтобы отремонтировать или сменить ствол, необходимо целиком все орудие отправлять на завод, и, таким образом, орудие надолго выбывает из строя.

Здесь возникает важный и интересный вопрос: какова же общая продолжительность жизни орудия?

После определенного числа выстрелов ствол приходит в состояние, при котором дальнейшее его боевое использование невозможно. Для орудий крупных калибров это состояние наступает уже после 150–200 выстрелов, а для орудий средних и малых калибров — после 10–15 тысяч выстрелов.

Кроме того, необходимо иметь в виду, что переплавка стволов, изготовленных из дорогостоящей стали, невыгодна экономически. Поэтому возникла мысль обновлять орудия, заменяя не весь ствол, а лишь тонкий внутренний слой металла. Для осуществления этой операции растачивают канал ствола. Вместо расточенной части вставляют тонкостенную трубу, называемую лейнером.

Впервые эта идея была осуществлена в 8-дюймовой и 9-дюймовой русских гаубицах, которые участвовали в русско-турецкой войне 1877–1878 гг.

В современных орудиях применяются два вида лейнеров: скрепленные лейнеры и свободные лейнеры.

Скрепленные лейнеры обычно вставляются с очень малым натяжением. В этом случае натяжение создается не столько для скрепления, сколько для обеспечения плотного соприкосновения наружной поверхности лейнера с внутренней поверхностью ствола. Смену скрепленных лейнеров нельзя производить на огневой позиции; для этого орудие нужно отправлять в мастерскую.

Для того, чтобы лейнер можно было заменить на огневой позиции, его обычно вставляют в ствол с зазором (рис. 20).

Ствол

Рис. 20. Ствол со свободным лейнером.

Наружный диаметр свободного лейнера должен быть меньше внутреннего диаметра ствола. При этом образуется зазор, равный 0,1–0,3 миллиметра. При выстреле лейнер прижимается плотно к внутренней поверхности ствола, который при этом тоже сопротивляется давлению пороховых газов. После выстрела зазор между свободным лейнером и стволом должен быть равен первоначальному зазору. Поэтому свободные лейнеры изготавливаются всегда из высококачественных легированных сталей.

Лейнеры изготавливаются цилиндрической и конической формы. Цилиндрические лейнеры могут быть вставлены в ствол и с дульной части, и с казенной. Конические лейнеры вставляются в ствол только с казенной части. От перемещения в стволе лейнер удерживается специальными приспособлениями.

Так, например, для того, чтобы цилиндрический лейнер, вставленный в ствол с дульной части, не вращался, ставится шпонка, одна часть которой находится в теле ствола, а другая в лейнере. От продольного перемещения назад лейнер удерживается кольцевым уступом ствола в казенной части, а от перемещения вперед — дульной гайкой и т. д.

Кроме лейнеров, в современных артиллерийских орудиях широко применяются так называемые свободные трубы (рис. 21).

Ствол

Рис. 21. Ствол со свободной трубой.

Свободная труба, в отличие от свободного лейнера, имеет более толстые стенки и вставляется в ствол с большим зазором. Свободную трубу вставляют в ствол с казенной части до упора в кольцевой уступ ствола, затем ее зажимают казенником. Таким образом, исключается возможность перемещения ее в продольном направлении. Вращение трубы в стволе предотвращается шпонкой.

Применение свободной трубы дает возможность использовать менее дорогую сталь, вследствие большей толщины ее стенок; кроме того, не требуется большой точности обработки наружной поверхности трубы. Основным недостатком свободной трубы по сравнению со свободным лейнером можно считать ее большой вес, затрудняющий перевозку запасных труб.

Следовательно, по характеру устройства стволы делятся на нескрепленные, скрепленные, стволы со свободным лейнером и стволы со свободной трубой.

По наружному устройству ствол обычно состоит из казенника, цилиндрической и конической частей. Для соединения с лафетом стволы старых систем снабжались цапфами.

В современных артиллерийских орудиях устройство частей, служащих для соединения ствола с лафетом, зависит от конструкции и расположения противооткатных устройств.

Говоря о канале ствола, мы имели в виду пока лишь цилиндрическую его форму. Но в настоящее время можно встретить орудия, стволы которых имеют канал конической формы (рис. 22).

Рис. 22. Ствол с коническим каналом.

Кроме того, известны опыты по применению стволов с полигональными (многоугольными) каналами.

В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола. Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд.

Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы.

Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола. Эти методы широко применялись при модернизации артиллерийских орудий.

Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду. Дл