Какое давление в патроне при выстреле
Максимальное давление в гладкоствольном ружье
Величина максимального давления (Рмах) пороховых газов во взаимосвязи c начальной скоростью снаряда определяют показатели качества выстрела, для дробовой осыпи — резкость, равномерность, постоянство боя и кучность в той степени, на сколько это может зависеть от патрона. От него зависит срок службы и надежность при эксплуатации ружья.
Есть два официальных метода измерения Рмах:
- пьезо — основывается на пьезоэлектрическом эффекте. При сжатии некоторых кристаллов на их боковых поверхностях возникает разность потенциалов, пропорциональная усилию сжатия. Им пользуются производители патронов и оружия в большинстве стран;
- крешерный метод — по деформации медного цилиндра, для оружия изготовленного в СССР и РФ применяется до сей поры испытательные патроны с давлением определенным крешерным методом.
- Используется так же метод измерения давления в стволе тензо датчиком, который реагирует на изменение размеров ствола под действием давления пороховых газов. Это метод позволяет измерять давление без сверления специального отверстия в патроне, как это предусмотрено при испытании в баллистическом стволе. Тензодатчик может быть установлен на любое ружье. Тензодатчик по точности измерений не уступает пьезо.
Промышленностью выпускается комплекты оборудования с тензодатчиком, позволяющие на основе любого ружья в сочетании с хронографами создать мобильный баллистический измерительный комплекс.
Фотоматериал предоставлен автором |
Фотоматериал предоставлен автором |
Фотоматериал предоставлен автором |
Фотоматериал предоставлен автором |
Крешеный метод фиксирует только величину Рмах, в то время как пьезо- и тензодатчики позволяют измерять давление на всем протяжении ствола.
ПМК и ГОСТ предусматривают разные величины Рмах в зависимости от способа измерения.
Это вносит некоторую путаницу, производители патронов при их маркировке указывают Рмах по пьезо методу измерения.
Для не магнум ружей 12 калибра среднее максимальное экспуатационное давление измеренное крешерным методом 60МПа соответствует 74 МПа если давление измеряется пьезо или тензо датчиком. Для магнум ружей 90 МПа (креш) или 104 МПа (пьезо).
Те страны, которые являются членами ПМК — Постоянной Международной Комиссии по испытанию ручного огнестрельного оружия Брюссельской Конвенции, имеют одинаковые условия испытания охотничьего оружия. В соответствии с решением ПМК испытательные патроны должны иметь среднее максимальное давление пороховых газов на 30% больше среднего максимального давления пороховых газов эксплуатационных патронов.
Рмах измеряется датчиком, установленным на расстоянии 25-30 мм от казенного среза.
С 1984 г. в СССР изменены условия проверки на прочность гладкоствольных ружей, согласно ГОСТ 23746-79 «Оружие спортивное и охотничье. Параметрические ряды калибров оружия и патронов к нему».
Ружья, предназначенные для стрельбы патронами со средним значением максимального давления пороховых газов в канале ствола, не превышающим 65 МПа (калибры 10 и 12), 68 МПа (калибр 16) и 72 МПа (калибры 20, 28 и 32), подвергают испытаниям патронами, имеющими среднее значение максимального давления пороховых газов для 10-го и 12-го калибров — 84,5 МПа, для 16-го — 68 МПа 918, для 20, 28-го и 32-го калибров — 68 МПа 969 кгс/см2, на стволы и коробку ружья наносят клеймо — букву П в круге — (П)
Если же оружие изготавливается для стрельбы патронами увеличенной мощности со средним значением максимального давления пороховых газов, равным 90 МПа, все ружья с длиной патронника 76 и 89 мм, то для его испытания применяют патроны со средним значением максимального давления пороховых газов, равным 120 МПа. В этом случае на стволы и коробку ружья наносят клеймо, состоящее из буквы П в двойном круге — О)
Кроме того, при вышеописанных испытаниях на прочность оружия делают еще один дополнительный выстрел вторым патроном со средним значением промежуточного давления пороховых газов в 162 мм от казенного среза ствола не менее 50 МПа.
С.М. Шейнин пишет, что для обеспечения требований ПМК возникли трудность по созданию испытательного патрона для второго выстрела т.к. советская промышленность не выпускала порохов такой степени прогрессивности позволяющие получить такие высокие давления в сечении 162 мм. Патроны удалось создать на основе пороха Барс.
Некоторые производители испытывают свои ружья давлением, превышающим требования ПМК. Так Фабарм испытывает давлением 1630 бар, а Браунинг 1730 бар . Метод измерения давления пьезо. Информация о величине испытательного давления наносится на стволы и ствольную коробку.
Требования ПМК и ГОСТ касающиеся патронов, распространяются только на патроны выпускаемые промышленностью.
Современные гладкоствольные ружья обладают значительным запасом прочности.
Главный конструктор Ижевского механического завода Н. Л. Изметинский сообщал об испытаниях ружей ИЖ-54 12 калибра и ИЖ- 58 16 калибра. Стреляли патронами, в которых постепенно увеличивали вес заряда пороха Сокол до 6г. Вес снаряда дроби при этом оставался неизменным 35 г в 12 калибре и 30 г в шестнадцатом. После чего никаких повреждений и изменений в ружьях обнаружено не было. Только при увеличении навески пороха Сокол до 7 г при весе дроби 35 г в обоих стволах ИЖ-54 были зафиксированы раздутия. Давление при этом было выше 2000 бар, т.е. более чем в три раза превышало давление нормального патрона.
Однако из этого не следует делать вывод о возможности применении таких навесок при снаряжении патронов для охоты.
Без специального оборудования, баллистического ствола определить максимальное давление не возможно. Рмах выше нормы, когда поддуло капсюль или вырвало трубку из донца гильзы или вообще не открывается ружье.
По отдаче нельзя судить о величине максимального давления.
Энергия отдачи находится в сложной зависимости от величины Рмах. Возможен вариант, что том же весе снаряда и при той же начальной скорости, но при более высоком Рмах, энергия отдачи уменьшится. А при превышении вес снаряда и веса заряда быстрогорящего спортивного пороха возможно повреждение ружья, при этом на величине энергии отдачи это никак не отразится.
Если допустить, что в период роста давления поверхность горения пороха постоянна, то Рмах меняется:
- более чем пропорционально квадрату веса заряда пороха;
- пропорционально квадрату скорости горения, силы пороха;
- прямо пропорционально весу снаряда;
- обратно пропорционально прогрессивности горения пороха;
- увеличивается с увеличением плотности заряжания.
Давление достигает своего максимума в патроннике, на расстоянии 30 — 60 мм от казенного среза.
фото: fotolia.com |
В нарезном стрелковом оружии и ствольной артиллерии величина Рмах патрона, выстрела ограничивается и подгоняется под величину Р мах оружия. В гладкоствольном патроне, кроме эксплуатационного давления ружья приходится учитывать то, что от Рмах прямо пропорционально зависит степень деформации свинцовой дроби. Что является основным фактором, влияющим на скорость удара и показатели качества осыпи.
60 — 65 МПа (600 -650 бар) оптимальное Рмах, обеспечивающее приемлемую степень деформации свинцовой промышленной твердой дроби ЛОТ, ЛСТ, ШОТ.
При использовании плакированной никелем или медью свинцовой дроби Рмах может быть выше 65 МПа.
При снаряжении с несжимаемыми буферными составами типа крахмал и со стальной дробью Рмах не должно превысить среднее максимальное эксплуатационное давление ружья. Следует обратить внимание, что при применении крахмала, при прочих равных, Рмах увеличивается до 12 МПа (120 бар).
Рассматривая влияние Рмах на начальную скорость снаряда следует отметить, чтоначальная скорость снаряда пропорциональна корню квадратному от интеграла давления по длине ствола, он же площадь под кривой давления на графике изменения давления и осью абсцисс от момента начала движения до вылета снаряда со ствола.
Величина интеграла в основном определяет вес заряда пороха и его свойства.
Меняя такие характеристики условий заряжания, как плотность заряжания, мощность капсюля, тип обтюрирующего элемента, при неизменном весе заряда пороха, меняется величина Рмах, форма кривой изменения давления по длине ствола и место пика в стволе. Но при этом площадь под кривой (интеграл) меняется незначительно.
Так протоколом отстрела патрона Главпатрон на баллистическом измерительном комплексе Тульского патронного завода зафиксировано, что увеличение Рмах с 562 до 662 бар увеличивает начальную скорость с 408,4 до 416,8 м/с.
Зависимость приращения начальной скорости от приращение Рмах нелинейная, зависит от уровне давления типа пороха и с увеличение приращения Рмах уменьшается.
Фотоматериал предоставлен автором |
Производители патронов стараются поддерживать нижний уровень Рмах приблизительно 60МПа (600 бар). Это связано с особенностями горения нитроцеллюлозных порохов.
При уменьшении давления в стволе ниже допустимого, величина которого зависит от характеристик пороха, происходить переход в аномальный режим горения. Этот режим характерен тем, что порох сгорает не полностью. В продуктах горения появляются окислы азота, которые являются промежуточными продуктами горения, при этом выделение тепловой энергии уменьшается в два раза.
При значительном уменьшении давления нитроцеллюлозные пороха прекращают горение.
Промышленностью выпускаются патроны в 70 мм гильзе, с давлением превышающим среднее максимальное эксплуатационное 74 бар пьезо для ружей с длиной патронника 70 мм. О чем делается специальная предупреждающая надпись на каждом патроне.
Согласно ГОСТ Р 50530 2010 патроны повышенной мощность должны для гладкоствольного оружия должны иметь отличительную маркировку, позволяющую их идентифицировать. данная маркировка должна быть нанесена одним из следующих способов.
- окраска донной части гильзы в черный цвет;
- надпись на корпусе гильзы « Max. 1050 bar»
- надпись на корпусе гильзы «For a weapon proofed by 1320 bar».
А на упаковке для патронов повышенной мощности должна быть нанесена маркировка, ясно указывающая на то, что этими патронами можно стрелять только из оружия, прошедшего специальное повышенное испытание. Пример — «Только для оружия испытанного давлением 1320бар».
Михаил Багдашкин 18 июля 2013 в 00:00
Источник
Давление в стволе: как оно измерено
Давление в стволе: как оно измерено
Необходимость определения предельной навески пороха, хотя и возникла, очевидно, вместе с огнестрельным оружием, достаточно долго критичной не была. Сказывалось то, что скорость горения дымного пороха мало зависит от давления, а значит, «пересып» был критичен только при грубейших ошибках, тем более в гладкоствольном оружии.
А вот во второй половине XIX века сначала появление нарезного оружия, а затем и бездымного пороха изменило ситуацию кардинально. Сопротивление движению пули, вызванное нарезами (особенно в начальный момент выстрела, когда пуля только начинала деформироваться), растущие требования к скорости полета пули увеличили давление в стволе, а для бездымных порохов, с их нелинейной зависимостью скорости горения от давления (способной вылиться в детонацию), «пересып» уже был крайне опасен.
Давление в стволе: как оно измерено
Изучение процессов, происходящих внутри ствола, требовало соответствующих способов замера давления в нем. Обычные манометры для таких давлений, к тому же воздействующих сотые доли секунды, не подходили категорически.
Старейший из существующих и поныне способов измерения давления — крешерный. Он прост как молоток: пороховые газы во время выстрела через стальной поршень осаживают калиброванный медный столбик (крешер), по изменению высоты которого и определяется давление.
Давление в стволе: как оно измерено
Но в простоте и кроется проблема. Крешер калибруется под статическим давлением (проще говоря — обжимается мощным гидравлическим прессом), а при выстреле давление меняется динамически и воздействует на него кратковременно. То есть крешерное измерение не только не передает всю картину изменения давления, важную для отображения процессов горения пороха в стволе, но и занижает давление. Чем больше давление и чем короче оно действует, тем погрешность крешерного измерения выше — она доходит до 20%.
В отличие от устаревшего крешерного метода измерения, пьезоэлектрический (основной на текущий момент) значительно совершеннее. Кристалл кварца, установленный в датчике, практически лишен инерции съема данных, позволяет получать данные в режиме реального времени — изначально осциллограммой, а теперь и напрямую на компьютер.
Давление в стволе: как оно измерено
Именно переход на пьезоэлектрический метод измерения позволил значительно усовершенствовать бездымные пороха, поскольку испытатели получали полную и точную картину процессов внутри ствола.
Давление в стволе: как оно измерено
Пьезоэлектрический датчик, что немаловажно, не обязательно должен вворачиваться в ствол: он может быть и накладным (хотя и с неизбежным огрублением показаний), то есть работать на «живом» оружии без его малейших модификаций.
Погрешность пьезоэлектрического метода измерений на порядок ниже, чем при использовании крешера — в пределах 1,5-2%. Именно «пьезоэлектрическое» давление сейчас указывается стандартами и для боеприпасов, и для оружия. Отсюда возникает путаница: старое оружие под нитропорох, для которого указывается «крешерное» давление, кажется несовместимым с современными боеприпасами своего калибра, для которых стандартом указано «пьезоэлектрическое». И не обязательно старое — например, ижевские «сорок третьи» под патрон 12/70 до недавних пор клеймились на 650 атмосфер, несмотря на нанесенное рядом клеймо CIP. Оружие же этого калибра, согласно CIP, должно иметь максимальное рабочее давление в 740 атмосфер. Да и сама заводская инструкция к ружью говорит прямо — «ружья с длиной патронника 70 мм предназначены для использования любых патронов с длиной гильзы до 70 мм, за исключением патронов с маркировкой «Max. 1050 bar». Парадокс? Отнюдь — «атмосферы» на стволах проставлены по крешерному методу. Впрочем, это дошло и до ихмеховцев — например, у автора на ружье 2017 года вообще никаких упоминаний давления нет вовсе.
Источник
ОГНЕВОЙ ПРОЦЕСС В СТВОЛЕ
ОГНЕВОЙ ПРОЦЕСС В СТВОЛЕ
Пороховой заряд винтовочного патрона весом 3,25 г при выстреле сгорает примерно за 0,0012 с. При сгорании заряда выделяется около 3 калорий тепла и образуется около 3 л газов, температура которых в момент выстрела равна 2400-2900°С. Газы, будучи сильно нагретыми, оказывают высокое давление (до 2900 кг/см2) и выбрасывают пулю из ствола со скоростью свыше 800 м/с. Общий объем раскаленных пороховых газов от сгорания порохового заряда винтовочного патрона примерно в 1200 раз больше по объему, чем было пороха до выстрела.
Выстрел из стрелкового оружия происходит в следующем порядке, от удара бойка по капсюлю боевого патрона, запертого в патроннике, его инициирующее вещество, зажатое между жалом ударника и наковальней гильзы, воспламеняется, это пламя через затравочные отверстия выбрасывается к пороховому заряду и охватывает зерна пороха. Весь заряд пороха загорается почти одновременно. Образующееся при сгорании пороха большое количество газов создает высокое давление на дно пули и стенки гильзы. Это давление газов создает растяжение в ширину стенок гильзы (при сохранении их упругой деформации), и гильза плотно прижимается к стенкам патронника, препятствуя, как обтюратор, прорыву пороховых газов назад к затвору.
В результате давления газов на дно пули она сдвигается с места и врезается в нарезы. Вращаясь по нарезам, пуля продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается по направлению оси канала ствола.
Давление газов на противоположные стенки ствола и патронника также вызывает их незначительную упругую деформацию и взаимно уравновешивается. Давление газов на дно гильзы запертого затвором патрона вызывает движение оружия назад. Это явление называется отдачей. Согласно законам механики отдача возрастает с увеличением порохового заряда, веса пули и с уменьшением собственного веса оружия.
Во всех странах боеприпасы стараются делать очень высокого качества. Несмотря на это время от времени имеет место производственный брак или боеприпасы портятся от неправильного хранения. Иногда после удара бойком по капсюлю выстрела не последует или он происходит с некоторым запозданием. В первом случае имеет место осечка, во втором — затяжной выстрел. Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Поэтому необходимо оберегать боеприпасы от влаги и содержать оружие в исправном состоянии.
Затяжной выстрел является следствием медленного развития процесса воспламенения порохового заряда. Поэтому после осечки не следует сразу же открывать затвор. Обычно после осечки отсчитывают пять-шесть секунд и только после этого открывают затвор.
При сгорании порохового заряда только 25-30% выделяемой энергии затрачивается в качестве полезной работы на выброс пули. На совершение второстепенных работ — врезание в нарезы и преодоление трения пули при движении по каналу ствола, нагревание стенок ствола, гильзы и пули, перемещение подвижных частей в автоматическом оружии, выброс газообразной и несгоревшей части пороха — используется до 20% энергии порохового заряда. Около 40% энергии не используется и теряется после вылета пули из канала ствола.
Задача порохового заряда и ствола — разогнать пулю до необходимой полетной скорости и придать ей убойную боевую энергию. Процесс этот имеет свои особенности и происходит в несколько периодов.
Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования, оно достигает 250-500 кг/см2 в зависимости от геометрии нарезов, веса пули и твердости ее оболочки. Горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули по стволу начинается сразу же при достижении в канале ствола давления форсирования. Порох в это время еще продолжает гореть.
Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период сгорание пороха происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще не велика, количество газов растет быстрее, чем объем пространства между дном пули и дном гильзы (запульного пространства), давление газов быстро повышается и достигает наибольшей величины — 2800-3000 кг/см2 (см. схемы 111, 112). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, давление в стволе начинает падать и к концу периода оно достигает примерно 3/4 искомой начальной скорости пули. Пороховой заряд сгорает незадолго до того, как пуля вылетит из канала ствола.
Схема 111. Изменение давления газов и нарастание скорости пули в стволе винтовки образца 1891-1930 гг.
Схема 112. Изменение давления газов и скорости пули в стволе малокалиберной винтовки
Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы продолжают расширяться и, продолжая оказывать давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза составляет у винтовки 570-600 кг/см2.
Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/с, продолжают действовать на пулю и сообщают ей дополнительную скорость. Наибольшей, максимальной, скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.
Какое практическое значение имеет все вышеизложенное? Посмотрите на схему-график 111 по винтовке калибра 7,62 мм. Исходя из данных этого графика, становится понятным, почему длину винтовочного ствола практически не имеет смысла делать более 65 см. Если его делать длиннее, скорость пули возрастает очень незначительно, а габариты оружия бессмысленно увеличиваются. Становится понятно, почему трехлинейный карабин с длиной ствола 47 см и скоростью пули 820 м/с имеет практически такие же боевые качества, как и трехлинейная винтовка с длиной ствола 67 см и начальной скоростью пули 865 м/с.
Аналогичная картина наблюдается и у малокалиберных винтовок (схема-график 112) и особенно у оружия под 7,62-миллиметровый автоматический патрон образца 1943 года.
Длина нарезной части ствола автомата АКМ составляет всего 37 см при начальной скорости пули 715 м/с. Длина нарезной части ствола ручного пулемета Калашникова, стреляющего теми же патронами, — 54 см, на 17 см больше, а пуля разгоняется незначительно — начальная скорость пули 745 м/с. Но у винтовок и пулеметов ствол приходится делать удлиненным для большей кучности боя и для удлинения прицельной линии. Эти параметры обеспечивают повышенную точность стрельбы.
Источник