Какое давление у полного углекислотного баллона

Важная информация о баллонах СО2

Информация о баллонах СО2

Введение

В предыдущей статье, посвященной роли углекислого газа, мы рассмотрели возможные варианты подачи углекислого газа в пресноводный аквариум.
Напомним, в статье были рассмотрены плюсы и минусы самых распространенных способов подачи СО2 в аквариум и выяснили, что самый лучший способ подачи является механический, а именно баллонные системы СО2.
В этой статье мы более детально расскажем о параметрах баллонов СО2, требованиях безопасности в процессе эксплуатации, основные моменты при проведении заправки баллонов.

Если вы еще не решились каким способом подавать газ в свой аквариум, мы рекомендуем остановится на выборе именно баллонной системы.

Общая информация о баллонах

Баллон Со2

Баллон — сосуд, имеющий одну или две горловины для установки вентилей, фланцев или штуцеров, предназначенный для транспортировки, хранения и использования сжатых, сжиженных или растворенных под давлением газов.

  • К эксплуатации допускаются только исправные и освидетельствованные газовые баллоны.
  • Вентиль газового баллона должен быть плотно ввернут в отверстие горловины или в расходно-наполнительные штуцера у специальных баллонов, не имеющих горловины.
  • Стенки баллона не должны иметь вмятин, трещин, вздутий, сильной коррозии и иных деформаций.
  • Баллон должен быть окрашен и маркирован соответственно ГОСТ. Остаточная окраска баллона должна быть не менее 70%.
  • Баллон должен иметь остаточное давление не менее 0,05 МПа (0,5 кгс/см2).
  • Паспорт баллона должен читаться.
  • Баллон должен быть освидетельствован.

Ремонт вентиля и освидетельствование баллонов, может проводить только специализированная организация, имеющая специальное разрешение на ремонт сосудов работающих под  давлением.
Баллоны могут храниться как в специальных помещениях, так и на открытом воздухе, при условии, что они защищены от атмосферных осадков и солнечных лучей.

Новый баллон или переосвидетельствованный (б/у) какой баллон купить?

Попробуем разобраться поэтапно. Преимущества новых баллонов:

  • Приобретая новый баллон, вы получаете баллон на полный срок эксплуатации (40 лет). Это, несомненно, является большим плюсом.
  • Помимо этого используя новый баллон вы можете быть уверенны, что ближайшие 5 лет, переосвидетельствовать баллон Вам не придется.
  • Новый газовый баллон исключает возможность наличия в нем всевозможных загрязняющих веществ: влаги, пор и неровностей, грязи и ржавчины.

Переосвидетельствование газового баллона

Переосвидетельствование углекислотного баллона

Срок технического переосвидетельствования баллонов СО2 в соответствии с Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением (утв. постановлением Госгортехнадзора РФ от 11 июня 2003 г. N 91) — 5 лет.

Перечень проводимых работ при переосвидетельствовании баллонов:

  1. Внешний осмотр поверхности баллона.
  2. Дегазация (после удаления остатков газа из баллона выполняется промывка негорючим (инертным) газом или водой)
  3. Контроль состояния вентиля.
  4. Взвешивание и расчет износа стенки баллона.
  5. Проведение гидравлических испытаний и промывка.
  6. Сушка внутренней поверхности баллона потоком теплого воздуха.
  7. Установка нового вентиля.
  8. Окраска баллона.
  9. Клеймление на поверхности баллона зарегистрированным в органах Госгортехнадзора клеймом, с указанием проведенного и следующего срока освидетельствования.

Паспорт баллона

Паспорт баллона

На корпусе нанесены сведения о баллоне (масса корпуса, дата производства, даты аттестаций и прочее), позволяющие сделать вывод о пригодности баллона к дальнейшей эксплуатации. Ниже приведены наиболее типичные записи и дается их расшифровка.

Надписи выбиты непосредственно на корпусе баллона в районе горловины. Иногда (особенно у старых баллонов) частично закрыты слоями краски и не видны.

  1. Только для ацетиленовых баллонов. Символы «ЛМ» или «ПМ» — тип наполнителя баллонов (ЛМ — литая масса, ПМ — пористая масса). Запись «ПМ» не всегда соответствует действительности, т.к. случается, что завод заменил наполнитель не сделав об этом отметки на корпусе.
  2. Заводской номер баллона.
  3. Фактическая вместимость баллона по воде при изготовлении в литрах. При превышении мерной вместимости балона над заводской более чем на 1.5% баллон к дальнейшей эксплуатации не допускается (нарушение геометрии корпуса, риск образования микротрещин).
  4. Фактическая масса корпуса баллона при изготовлении. При уменьшении массы корпуса против номинальной более чем на 7.5% баллон к дальнейшей эксплуатации не допускается (унос массы, коррозия и истончение стенки).
  5. Рабочее («Р») и проверочное («П») давления баллона в атмосферах.
  6. Дата изготовления и следующей переаттестации в формате «MM.ГГ.АААА», где «MM» — номер месяца изготовления, «ГГ» — две последние цифры года изготовления, «АААА» — год следующей переаттестации (либо «АА» — две последние цифры года следующей переаттестации). Буква «N» — клеймо завода, свидетельствующее о том, что запись относится к сведениям об изготовлении баллона.
  7. Буквенно-цифровой шифр, обведенный в круг — клеймо завода или лаборатории, где проводилась переаттестация.
  8. Сведения о дальнейшей переаттестации баллона в формате «MM.ГГ.АААА», где «MM» — номер месяца переаттестации, «ГГ» — две последние цифры года переаттестации, «АААА» — год следующей переаттестации (либо «АА» — две последние цифры года следующей переаттестации). Если баллон проходил несколько переаттестаций, то сведения о них, как правило, выбиваются друг под другом или, что реже, к существующей записи добавляется год следующей переаттестации в формате «.АА» и эта запись заверяется клеймом. При этом надпись приобретает следующий, например, вид: «R 1.92.97.02 R», что следует читать так: баллон переаттестовывался в январе 1992 года и, затем, в январе 1997 года снова прошел переаттестацию, которая будет действительна до января 2002. (символ «R» изображает здесь клеймо участка переаттестации.)

Надписи на приведенном на рисунке баллоне следует читать так: баллон № 36847 изготовлен в феврале 1990 года. Масса корпуса 63.4 кг, вместимость 40.1 литра. Проведены гидравлические испытания корпуса на 225 атм, разрешенное номинальное (рабочее) давление 150 атм. В марте 1995 года баллон прошел очередную переаттестацию на участке «Ц4», дата следующей переаттестации — март 2000 года.

Паспорт углекислотного баллона

Паспорт углекислотного баллона

Надписи на приведенном фото баллона следует читать так: баллон № 5445, изготовлен в сентябре 2018 года, год следующего освидетельствования 2023, масса корпуса 3,8 кг, вместимость 2 литра. Проведены гидравлические испытания корпуса на 225 атм, разрешенное номинальное (рабочее) давление 150 атм.

Важная информация. Масса баллона на паспорте, указывается без учета веса вентиля. На наших баллонах применяются вентили весом 0,45 кг. Исходя из этого, пустой баллон будет весить немного больше указанного на его паспорте. В итоге общая масса баллона, приведенного на фото будет равняться сумме 3,8 кг + 0,45 кг = 4,25 кг.

Существенные дополнения:

  • Запрещается эксплуатация баллонов, имеющих нарушения геометрии (вмятины, вздутия, общую бочкообразность и т.п.);
  • баллоны не должны иметь следов повреждения краски огнем;
  • Баллоны с поражением ржавчиной свыше 30% поверхности баллона к обмену также не принимаются.
  • Покупая баллон всегда проверяйте дату поверки баллона — выбитое клеймо с указанием даты теста под давлением в несколько раз больше номинального. Это делается для того чтобы предупредить разрушение баллона по причине появления усталостных трещин в металле, перегрева, или перенаполнения. На баллоне должен быть выбит вес пустого (нетто) и заправленного CO2 (брутто) баллона — по этим данным вы будете проверять полноту заправки и контролировать чтобы баллон не перенаполнили, что очень опасно.

    Надписи выбиты непосредственно на корпусе баллона в районе горловины. Иногда (особенно у старых баллонов) частично закрыты слоями краски и не видны.

    Читайте также:  Какое давление перепускного клапана тнвд

    Требования, предъявляемые к газовым баллонам при наполнении их газами.

    Запрещается наполнять газом баллоны, у которых:

    • истек срок назначенного освидетельствования;
    • истек срок проверки пористой массы;
    • поврежден корпус баллона;
    • неисправны вентили;
    • отсутствуют надлежащая окраска или надписи;
    • отсутствует избыточное давление газа;
    • отсутствуют установленные клейма.

    Частые вопросы задаваемые покупателями

    Вопрос: Сколько углекислого газа надо заправлять в баллон? 

    Ответ: На паспорте, выбитом на баллоне есть буква «Е» и рядом с ней выбита цифра, обозначающая емкость баллона, к примеру: на баллоне выбито Е2, это означает, что емкость баллона 2 литра.

    При заправке пустого баллона, значение «Е» ВСЕГДА УМНОЖАЕМ НА 0,6 (любое значение «Е»). По нашему примеру, Е2 * 0,6 = 1,2. 

    Полученная цифра обозначает количество углекислоты, измеряемое в килограммах, которое нужно заправить в данный баллон с учетом, что он аттестован, не имеет внешних повреждений и соответствует ГОСТ.

    Важно!: после того, как Вы перед заправкой поставили на весы пустой баллон, необходимо, чтобы работник заправочной станции «обнулил» весы при Вас, значение весов перед заправкой должно быть 0 кг.

    В случае если количество заправленной углекислоты было заправлено больше нормы, ее необходимо «стравить». 

    После заправки баллона на станции, желательно выполнить контрольное взвешивание баллона проверенными весами.

    Вопрос: При какой температуре безопасно эксплуатировать заправленную систему СО2 для аквариума? Дома летом жара, 33-35 градусов, не опасно ли держать в квартире заправленный баллон с СО2? Начитался, что критическая температура 31.5, хочу поставить, но боязно. 

    Ответ: При эксплуатации баллона в помещении не следует размещать баллон ближе чем 1 метра от источников обогрева.
    Температурный диапазон эксплуатации баллона Со2 от -40°C до +50°C.

    Немаловажную роль играет количество углекислоты заправленной на заправочной станции. Выше нормы заправлять баллоны категорически запрещается, мы рекомендуем придерживаться цифры 600 грамм углекислоты на один литр пустого баллона.

    Если эти параметры при заправке выдержаны, то повышенная температура в летнее время не окажет никакого влияния на безопасную эксплуатацию. Также хотим отметить, что безопасно эксплуатировать баллонные системы и оборудование СО2 прошедшие аттестацию в соответствии с действующими нормативами.

    Вопрос: Какое минимальное количество углекислого газа должно остаться в баллоне?

    Знакомые мне сказали если газ из баллона выйдет до конца, то давление поднимется до критического. 

    Ответ: Не волнуйтесь по этому поводу, это заблуждение. Мы рекомендуем не спускать газ полностью, а приостановить подачу при давлении 0,5  и отвезти его на заправочную станцию. 

    Примечание. Согласно требований нормативных документов по хранению и эксплуатации газовых баллонов запрещается выбирать полностью находящийся  в них газ. Остаточное давление газа в баллоне должно быть не менее 0,05 МПа (0,5 кгс/кв. см). В таком состоянии сотрудники заправочной станции обычно сами спускают остатки газа из баллонов СО2, а после приступают к их заправке.

    Вопрос: Мой знакомый заправляет свои баллоны в гараже методом перелива из баллона большей емкости. Говорит что стоимость литра углекислоты намного дешевле. Можно ли таким образом заправлять баллоны?

    Ответ: Данный способ заправки баллонов крайне опасная процедура. Мы рекомендуем заправлять баллоны на сертифицированных заправочных станциях, на которых работают квалифицированные сотрудники, и на которых есть необходимое оборудование для заправок сосудов под давлением.

    Вопрос: У меня  дома стоит аквариум на 120 литров, на какое время хватит 4-л баллонной СО2 системы? 

    Ответ: Расход  углекислого газа при подачи в аквариум зависит от способа подачи газа, промежутка времени и количества подаваемого углекислого газа. Также хотели отметить, что при круглосуточной подаче газа количество дней в среднем сокращается в 2 раза. Если рассматривать среднее количество подаваемого газа с учетом того, что газ будет отключаться электромагнитным клапаном (ЭМК), то такого баллона хватит примерно на 7-12 месяцев.

    Вопрос: Подскажите пожалуйста, можно ли эксплуатировать баллон в горизонтальном положении? Просто в аквариумной тумбе нет возможности установить его вертикально.  

    Ответ: Транспортировка заправленного баллона в таком положении возможна. Эксплуатировать баллон в таком положении нельзя. Углекислый газ в баллоне находится под давлением в жидком состоянии, в таком положении углекислота в жидком виде обязательно попадет в редуктор, что в свою очередь может вызвать его неисправность.

    Преимущества наших систем подачи углекислого газа для аквариума

    Система подачи углекислого газа для аквариума Co2 Aqua

    Заключение

    Сегодня на рынке большое разнообразие баллонов для аквариумных систем СО2. Обращайте внимание на информацию приведенную в этой статье.

    Не покупайте баллоны на таких торговых площадках как Авито или подобных, вы можете приобрести неисправные, не новые, перекрашенные и/или не прошедшие аттестацию баллоны. 

    Также хотим отметить, некоторые «производители/продавцы» реализуют шовные баллоны, такие баллоны не соответствуют требований ГОСТа, будьте внимательны при покупке.

    Всегда требуйте у продавцов паспорт и сертификат на реализуемую продукцию.

    Компания Co2 Aqua предлагает на выбор большой выбор баллонов СО2 и готовых баллонных систем СО2 для природных аквариумов. 

    Все реализуемые баллоны изготовлены из стали на территории РФ, не имеют швов (безшовные), нижняя часть с плоским дном, изготовлены и прошедшие аттестацию на территории России согласно ГОСТ 949-73. После покупки мы предоставляем все необходимые документы.

    Более подробно с ассортиментом товаров можно ознакомиться на нашем сайте.

    Если Вы хотите собрать баллонную систему СО2 для аквариума собственными силами, то мы рады предложить Комплектующие СО2 для самостоятельной сборки.

    Все комплектующие, реализуемые в нашем интернет-магазине изготавливаются итальянской фирмой Camozzi. 

    Более подробную информацию по баллонным системам СО2 и баллонам СО2 можно ознакомиться в разделах нашего сайта Баллоны СО2 и Системы СО2 для аквариума.

    Если вам понравилась статья, то сделайте репост или поделитесь знаниями с вашими друзьями!

    © Копирование представленных на данном сайте материалов разрешается только при наличии активной обратной ссылки.

    Источник

    Каково давление углекислого газа в баллоне. Давление в баллоне с углекислотой: важный показатель безопасности

    Технические требования

    Стальные сосуды под давлением объёмом 0,4–50 л используются без малого век. Отечественный ГОСТ 949-73 распространяется на ёмкости для транспортировки промежуточного хранения, технологической раздачи потребителям.
    Цельнотянутые бесшовные баллоны малого и среднего объёма из конструкционной стали 45Д и легированной 40ХГСА рассчитаны на рабочее давление 15 и 20 МПа для сосудов 50–20 л и 15 МПа для меньших, которые допускается выпускать с плоским дном.

    Отличительная маркировка – жёлтая надпись эмалью «углекислота», «СО2» «двуокись углерода» по чёрному полю. Основные физические параметры и типоразмеры представлены в таблице:

    Давление, МПа50 л,
    Сталь 45Д/30ХГСА
    40л
    Сталь 45Д/30ХГСА
    20 л
    Сталь 45Д
    Ø, ммL, ммM, кгØ, ммL, ммM, кгØ, ммL, ммM, кг
    152191685/166071,3/62,52191370/135058,5/51,521974032,3
    201755/165093,0/62,51430/135076,5/51,577042,0

    Сосуды меньших объёмов выполнены из стали 45Д, рабочее давление 15 МПа

    Ø, мм12 л10 л8 л5 л4 л2 л
    L, ммM, кгL, ммM, кгL, ммM, кгL, ммM, кгL, ммM, кгØ, L, ммM, кг
    140102017,686513,071012,44758,54007,3108/3303,7

    В комплектацию входят:

    • запорный вентиль кислородный с правой резьбой латунный;
    • предохранительные кольца из резины на цилиндрическую часть;
    • опорный башмак прямоугольной формы для устойчивости;
    • колпак предохранительный стальной либо формованный из неметаллов.

    Эксплуатирующиеся баллоны проходят через 5 лет периодическую переаттестацию, включающую техосмотр и испытание избыточным давлением, превышающем рабочее на 50%. Информация с датой освидетельствования наносится ударными клеймами на зачищенную горловину, обрамляется жёлтой полосой по периметру.

    Читайте также:  Какое давление в трубках гур

    Это «паспорт углекислотного баллона» с полным перечнем информации:

    • дата выпуска, переаттестации;
    • № баллона, присвоенный производителем;
    • литраж наполнения;
    • технологическое гидродавление;
    • марка стали и физические величины веса и размеров.

    Помогут формулы

    1. Для кислорода

      V = K коэфф. × V б

      К=((0,968× Д + 1) × 293×10 -3)/((273+ T) × Z)

      V б в дм 3 ─ вместимость, Д в кгс/см 2 ─ данные манометра, Z ─ коэффициент сжигаемости кислорода. Параметр 0,968 кгс/см2 пересчитывает технические показатели атмосфер.

    2. Для пропана и бутана

      Масса газа= V баллона м3 × (0,4× Пл. проп. + 0,6 ×Пл. бут.)

      При нормальных условиях плотность жидкого пропана 510 кг/м 3 , а бутана 580 кг/м 3 . Цифры 0,4 и 0,6 указывают процентное соотношение химических элементов.

    Применение: газоподготовка

    Длительное и промежуточное хранение баллонов допускается на оборудованных кровлей и защитными перегородками рампах, исключающих попадание атмосферных осадков, в холодных и отапливаемых помещениях с естественной вентиляцией.
    Жидкая углекислота в поставке для сварочных работ приобретается высшего и первого сортов. Заправка баллонов углекислотой для пищевиков дороговата, но желательна: Влажность газа нулевая.

    Применение газа второго сорта допускается при возможности осушения: к 1% водного осадка добавляется нерегламентированное количество паров жидкости. Извлечением из газового потока паров воды занимается газоосушитель.

    Это герметичная ёмкость с засыпкой гигроскопичными материалами. Осушители низкого давления устанавливаются после редуктора, высокого – принимают газ из баллона перед редуктором. Влагопоглотителями выступают алюмогель, силикагель, медный купорос.

    Адиабатическое охлаждение газа провоцирует резкое объёмное расширение. Газопотребление в пределах 15–20 л/мин приводит к оледенению паров влаги, что чревато закупоркой редуктора. Газозабор высокого объёма требует установки газоподогревателя змеевикового типа на 24/36 В. Термоэлемент нейтрализует замерзание паров воды, рассчитан на пропуск больших объёмов.

    Активная газозащита сварочных швов при полуавтоматической дуговой сварке плавящимся проволочным электродом ведётся углекислотой в чистом виде или в смеси с аргоном.

    Использование баллонов подразумевает ограниченный суточный расход сварочными постами. 40-литровый баллон с внутренним давлением 6 МПа принимает 25 кг сжиженной субстанции. В газообразном виде после испарения жидкость трансформируется в 12,5 тыс. л газа.

    Покупка: критерии выбора и выбраковки

    Приобретение инвентаря высокого давления (ВД) длительного использования нового либо б/у сложностей не представляет. Трудности возникнут при заправке углекислотных баллонов, если покупатель не учёл ограничения в эксплуатации и заправке:

    • Заправка баллонов углекислотой затрудняется, если оборудование станции заправки рассчитано на больший литраж – выручат заправщики огнетушителей;
    • Заполнение малолитражных ёмкостей в условиях гаража возможно посредством баллона-донора шлангом высокого давления при соблюдении условий безопасности;
    • Если пропущен срок аттестации, сосуд ВД подлежит проверке и сертификационному испытанию;

    Приобретать газобаллонное оборудование желательно у надёжных поставщиков. Б/У – у производственников. Они следят за оборудованием, документооборот на уровне: предоставят оригинал сертификата соответствия, акты проведения испытаний.

    Причины браковки газобаллонного оборудования, касающиеся всех категорий наполнения по результатам внешнего осмотра:

    • неисправность запорного вентиля;
    • износ резьбы горловины;
    • неполное нанесение паспортных данных, просрочено очередное освидетельствование: отсутствие, неполнота паспортной информации переводит баллон в статус непригодных к эксплуатации;
    • срок жизни баллона с момента первой аттестации производителем 20 лет, превышение срока пользования на практике невозможно;
    • большая площадь и глубина наружной коррозии;
    • вмятины либо выпучины;
    • трещины;
    • риски и раковины глубиной 1/10 толщины металла;
    • повреждён либо косо посажен башмак;
    • несоответствие окраски и надписи.

    Обязательные требования к пользователю оборудованием ВД:

    • автомобиль для перевозки должен обеспечить транспортировку в горизонтальном положении;
    • период покоя независимо от сезона перед началом работ составляет 0,5 часа;
    • задействованные и складские сосуды ВД не повергаются прямым солнечным лучам, не складируются вблизи нагревательных приборов.

    Редуктор

    Стабилизацию, понижение давления подачи газозащиты, оптимальный расход углекислоты при сварке полуавтоматом, блокировку подачи двуокиси углерода при прекращении сварки осуществляет редуктор.
    Однокамерный и двухкамерный (двухступенчатый) регулятор давления с последовательным расположением полостей снижения давления настраивается поворотом ручного регулятора изменения потока подачи СО2.

    Манометр на входе регистрирует давление двуокиси углерода в баллоне. Второй – в камере регуляции, сети раздачи угольного ангидрида. Не ограничиваясь функцией регистратора изменений, редуктор работает как стабилизатор выходного давления.

    Расход диоксида углерода в баллоне не должен влиять на то, какое давление углекислоты должно быть при сварке полуавтоматом. Мембрана редуктора занимает позицию пропуска газа в полость камеры снижения рабочего давления при первичной настройке. Изменение параметров напряжения управляющей пружины приводит в действие противоположную регулировочную пружину.

    Площадь открытого сечения впускного клапана плавно меняется в сторону увеличения, но расход углекислоты при сварке полуавтоматом остаётся прежним. Постоянство либо изменение выходного давления корректируется по текущему показанию манометра регулировочным винтом.

    Манипуляциями входящего в комплектацию шарового крана ведётся уточнение величины газоистечения. Расходная шайба с дюзой корректируют выпуск по величине значения давления в рабочей камере.

    Защитой пневморедуктора занимается вмонтированный предохранительный клапан. Скачок давления приведёт к разрыву мембраны. Потеря герметичности входным штуцером с увеличением пропуска газа ведёт к превентивному запиранию системы.

    Пневморедукторы классифицируются по количеству ступеней выравнивания давления (камер). Двухступенчатый редуктор с последовательным снижением давления в неотапливаемом помещении в зимнее время незаменим.

    Разделение пневморегуляторов по условиям использования:

    • сетевые – работа в стационарной сети углекислотной станции;
    • рамповые – обслуживание многопостовых участков.

    Важно! Использование редуктора на наклонённом, лежачем баллоне недопустимо![/stextbpx]

    Взаимозаменяемость кислородного и углекислотного

    Конструктивно они сходны, а заменяемость частична. Кислородный редуктор рассчитан на давление в 2,5 раза выше, эксплуатационные требования жёстче. Диоксид углерода химически нейтрален и не повреждает мембрану. А углекислотный на кислородном баллоне долго не выдержит именно из-за разрушения мембраны. Но применение не по назначению будет ошибкой. При сварке с диоксидом углерода кислородный редуктор замерзает. Коэффициент расширения углекислоты приводит к понижению температуры на редуцирующем клапане до –600 С. Кристаллизация влаги приведёт к выходу из строя устройства.
    Требования взрывобезопасности диктуют ставить на кислород редуктор с накидными гайками. Баллон углекислотный позволительно крепить хомутом – утечка не приведёт к пожару.

    УР 6-6

    Среди многообразия редукторов выделяют компактный универсальный стрелочный УР 6-6 с калиброванным жиклёром. Пригоден для регуляции подачи аргона, иных газов и смесей с предельной долей кислорода до 23% на газобаллонном оборудовании 20–50 л. Ударопрочный корпус выполнен из латуни. Рекомендовано подключение электроподогревателя.

    Технические характеристики:

    • встроен очистной фильтр во впускной клапан, противодействующий обратному стравливанию в баллон;
    • входное давление – до 20 МПа;
    • пропускная способность – до 1,8 м3/час. (30 л/мин.);
    • рабочее давление – 0,35 МПа;
    • предел неравномерности рабочего давления – 4%
    • вес – 0,7 кг;
    • считается самой экономичной моделью.

    С ротаметром

    Удобство расходомера при сохранении функциональности обычного регулятора в отображении расхода углекислоты при сварке полуавтоматом в текущем режиме. Ротаметрический регулятор оснащён на выходе калиброванной дроссельной заслонкой. Гарантируется точность управления и показаний газопотока.
    Манометр указывает единицы расходования. Прибор настроен и уточняющие регулировки нежелательны. Двухротаметрные редукторы предназначаются для защиты шва химически активных металлов с обеих сторон.

    Гиперкапния и гипоксемия: признаки, возникновение, диагностика, как лечить

    Сегодня артериальная гипертония считается «чумой XXI века». Ею страдает треть населения земного шара. Смертность от развития сердечно-сосудистых осложнений на фоне артериальной гипертонии занимает более 56% от общей смертности в России. Число заболевающих неуклонно растет, а высокое артериальное давление становится пороком людей все более и более молодого возраста.

    Не может не вызывать глубоких раздумий тот факт, что все это происходит на фоне существования на рынке сотен лекарственных препаратов для понижения артериального давления и чрезвычайно высокого развития фармакологической промышленности. Вот уже несколько десятилетий как фарминдустрия неуклонно развивается в области производства гипотензивных препаратов, но заболеваемость и смертность от гипертонии не только не уменьшается, но и превосходит все возможные пределы, превращаясь в пандемию…

    Страдающий от высокого давления долгие годы человек привык считать, что это заболевание появилось само по себе, в некоторых отдельно взятых случаях люди ссылаются на наследственность. Мало кому известен тот факт, что высокое давление является вынужденной защитной реакцией организма, призванной сохранить жизнеобеспечение ваших органов при недостатке кислорода в тканях – кислородном голодании.

    Читайте также:  В каком положении брусок производит большее давление

    чем глубже вы дышите – тем меньше кислорода получают ваши органы и ткани. Но каждый читающий скажет – «я дышу нормально, я не дышу глубоко». Дело в том, что чрезмерно глубокое дыхание с детства становится патологией современного человека, переходящей в привычку, на которую просто не обращают внимания.

    Люди привыкли следить за процессом питания и каждому известно, что чрезмерное питание ведет к ряду заболеваний, но в то же время практически никто не обращает внимания на важнейший для обмена веществ процесс – дыхание и его глубину. Именно поэтому ни о каком нормальном дыхании говорить в данном случае нельзя.

    Вы доглие годы дышите значительно глубже нормы – из организма излишне вымывается углекислый газ, являющийся одним важнейших компонентов, необходимых для насыщения тканей кислородом – происходит хроническое кислородное голодание органов на протяжении многих лет, которое рефлекторно вызывает у вас стойкое повышение артериального давления.

    Как образуется многолетняя, прогрессирующая артериальная гипертония? Последним звеном в цепочке нарушений, вызванных излишне глубоким дыханием пациента, является реакция дыхательного центра в головном мозге на недостаток кислорода в органах – происходит рефлекторное учащение и углубление дыхания. Таким образом, вымывание углекислого газа усиливается в еще большей степени, недостаток обеспечения тканей и органов кислородом увеличивается, артериальное давление приобретает все более высокие цифры и весь патологический процесс нарушений обмена веществ зацикливается.

    У больного появляется учащенное дыхание, одышка, ложное ощущение нехватки воздуха – и все это при том, что в действительности его легкие полны воздуха. Человек начинает дышать еще глубже и чем глубже он дышит, тем хуже ему становится и тем выше подымается артериальное давление. Здесь имеет место тесная взаимосвязь в регуляции деятельности дыхательной и сердечно-сосудистой систем в организме человека.

    Становится очевидным, что для того чтобы понизить артериальное давление и привести его к норме необходимо в первую очередь ликвидировать кислородное голодание тканей, вызванное излишне глубоким дыханием. Если привести дыхание пациента к физиологической норме – содержание углекислого газа в его крови увеличится до необходимого значения, восстановится адекватное снабжение органов и тканей кислородом, исчезнет спазм сосудистой стенки и артериальное давление естественным образом нормализуется.

    Уже в 1952 году советским врачом и физиологом Константином Павловичем Бутейко была заложена концепция влияния чрезмерно глубокого дыхания на развитие целой группы наиболее распространенных заболеваний человека. Тогда же Бутейко был разработан цикл специальных дыхательных тренировок, направленных на постепенное приведение дыхания пациента к физиологической норме – метод Бутейко.

    На сегодняшний день дыхание по методу Бутейко помогает тысячам пациентов с повышенным артериальным давлением. Неоспоримым преимуществом лечения на методе является отсутствие лекарственной нагрузки. Метод также успешно применяется в качестве комбинированной терапии совместно с лекарственными препаратами при тяжело запущенной длительно текущей артериальной гипертензии терминальных стадий, где позволяет значительно снизить объем принимаемых лекарственных препаратов и значительно повысить эффективность лечения.

    Итак, подведем итоги:

    1. Высокое артериальное давление – вынужденная защитная реакция вашего организма на недостаток кислорода в органах
    2. Недостаток кислорода вызван «дыхательным парадоксом» — физиологическим эффектом: чем больше глубина дыхания — тем сильнее вымывается из организма углекислый газ — тем меньшее обеспечение кислородом получает организм
    3. Глубокое дыхание на протяжении многих лет приводит к стойкому повышению артериального давления – гипертонической болезни и является изначальной причиной ее развития
    4. Для нормализации артериального давления необходимо понизить глубину дыхания до физиологической нормы и нормализовать таким образом адекватное обеспечение организма кислородом

    Главный врач Центра эффективного обучения методу Бутейко, Врач-невролог, Константин Сергеевич Алтухов

    Как обучиться методу Бутейко?

    Открыта запись на обучение методу Бутейко с получением «Практического видео-курса по методу Бутейко»

    Много раз мы слышали, как вредно находиться в помещении с повышенным уровнем углекислого газа и как важно нормальное содержание кислорода в воздухе, которым мы дышим. Вместе с тем, всем известно, что кислород в организм должен попадать бесперебойно и в достаточном количестве, в противном случае снижение кислорода в крови (гипоксемия) и накопление углекислого газа (гиперкапния) приводят к развитию состояния, называемого гипоксией.

    Различают две формы острой дыхательной недостаточности: гиперкапническую, обусловленную повышенным уровнем углекислого газа, и гипоксемическую форму ОДН, когда проблемы возникают вследствие низкой оксигенации артериальной крови. Для острой дыхательной недостаточности характерно и то, и другое: и повышенная концентрация углекислого газа, и низкое содержание кислорода, то есть, и гиперкапния, и гипоксемия, но все же их нужно отделять друг от друга и разграничивать при выборе методов лечения, которые хоть, в принципе, и похожи, но могут иметь свои особенности.

    Гиперкапния – повышение уровня углекислого газа (СО2) в крови, гипоксемия – снижение содержания кислорода (О2) там же. Как и почему это происходит?

    Известно, что транспорт кислорода из легких с артериальной кровью осуществляют красные кровяные тельца (эритроциты), где кислород находится в связанном (но не очень прочно) с хромопротеином (гемоглобином) состоянии. Гемоглобин (Hb), несущий кислород к тканям (оксигемоглобин), по прибытию на место назначения отдает О2 и становится восстановленным гемоглобином (дезоксигемоглобин), способным присоединять к себе тот же кислород, углекислый газ, воду.

    Но так как в тканях его уже ждет углекислый газ, который нужно с венозной кровью доставить в легкие для выведения из организма, то гемоглобин его и забирает, превращаясь в карбогемоглобин (HbСО2) – тоже непрочное соединение. Карбогемоглобин в легких распадется на Hb, способный соединиться с кислородом, поступившим при вдохе, и углекислый газ, предназначенный для вывода из организма при выдохе.

    Схематично эти реакции можно представить в виде химических реакций, которые, возможно, читатель хорошо помнит еще из школьных уроков:

    • Hb (в эритроцитах) О2 (приходит при вдохе с воздухом) → HbО2 – реакция идет в легких, полученное соединение направляется в ткани;
    • HbО2 → Hb (дезоксигемоглобин) О2 – в тканях, которые получают кислород для дыхания;
    • Hb СО2 (отработанный, из тканей) → HbСО2 (карбогемоглобин) – в тканях, образованный карбогемоглобин направляется в малый круг для газообмена и обогащения кислородом;
    • HbСО2 (из тканей) → в легкие: Hb (свободен для получения кислорода) СО2↑ (удаляется с выдохом);
    • Hb О2 (из вдыхаемого воздуха) – новый цикл.

    Однако следует отметить, что все так хорошо получается, когда кислорода хватает, избытка углекислого газа нет, с легкими все в порядке – организм дышит чистым воздухом, ткани получают все, что им положено, кислородного голодания не испытывают, образованный в процессе газообмена СО2 благополучно покидает организм.

    Из схемы видно, что восстановленный гемоглобин (Hb), не имея прочных связей, всегда готов присоединить любой из компонентов (что попадается, то и присоединяет). Если в легких на тот момент окажется кислорода меньше, чем может забрать гемоглобин (гипоксемия), а углекислого газа будет более, чем достаточно (гиперкапния), то он заберет его (СО2) и понесет к тканям с артериальной кровью (артериальная гипоксемия) вместо ожидаемого кислорода. Пониженная ?