Какое давление создает водород

Проблемы водородной энергетики

Часть 5

Если судить по прошлым статьям, где описывалась водородная энергетика и перспективы водородной экономики, то может возникнуть заблуждение, что никаких технологических ограничений к переходу на водород, в принципе, нет. Однако это не так.

Самая большая нерешённая проблема водородной энергетики и перспектив водородной экономики – это хранение водорода.

Хранение водорода обходится ещё дороже, чем его производство. Всё дело в плотности энергии водорода на 1 м3, и в больших утечках. Также к хранению водорода предъявлен список строгих требований, среди которых главным является то, что системы хранения должны выдерживать либо криогенные температуры, либо высокие давления, либо содержать активные материалы, которые взаимодействуют с водой или воздухом.

То есть условия хранения водорода – всегда неблагоприятные, требующие обеспечения высокой надёжности и безопасности.

Какие существуют методы хранения водорода?

1. Хранение газообразного водорода под давлением.

Самый простой метод хранения водорода – это его газообразная форма под давлением.

1 килограмм водорода при комнатных условиях занимает 11,2 м3 объёма, что очень много. Сжимая газообразный водород, мы увеличиваем его плотность. Согласно уравнению состояния идеального газа, чем выше давление газа, тем меньший объём он занимает.

Сам принцип, инфраструктура и технические решения такого метода уже давно отработаны на хранении природного газа.

Для хранения используются цилиндрические баллоны и трубы большого диаметра (контейнеры).

В обычных стальных баллонах хранится водород под давлением до 200 атмосфер.

В России принят стандарт окраски и маркировки баллонов содержащий сжатый водород: Темно-зеленый баллон, с красной надписью.

При таком давлении в 1 м3 хранится около 17,8 килограмм водорода. То есть для хранения 1 кг, водорода при давлении в 20 МПа, нужно 56,3 литра объема. И это честно говоря, вообще трэш с энергетической точки зрения.

Самостоятельно можно подсчитать энергетическую плотность, и узнать, почему это трэш.

Существуют титановые баллоны, способные хранить водород под давлением 400 атмосфер.

Наиболее передовые, композитные баллоны, используемые на автотранспорте, способны безопасно выдерживать давление до 700 атмосфер.

Баки из углепластика со сжатым под давлением 680 атмосфер водородом располагаются под днищем Toyota Mirai.

Однако даже при таком высоком давлении энергетическая плотность водорода составляет всего 4,4 МДж на 1 литр, что более чем в 7 раз меньше аналогичного показателя бензина – 31,6 МДж на 1 литр.

В BMW i Hydrogen NEXT две емкости, в которых под давлением 700 бар хранится 6 кг водорода.

Хранение водорода под рабочим давлением 160 атмосфер в стационарных условиях происходит в трубах-контейнерах, часто объединённых по 18 штук. Это позволяет запасти до 700 кг водорода.

Контейнеры для хранения водорода

2. Хранение водорода в жидком виде.

Плотность жидкого водорода составляет 70,8 кг/м3, что в 1,83 раза больше чем в газообразной форме при давлении в 700 Атмосфер. Соответственно, энергетическая плотность будет более 8 МДж на 1 литр.

Однако сам процесс сжижения водорода энергоёмкий: от 25 до 45 % энергии сжиженного водорода расходуется на сам процесс сжижения, что соответствует 10-14 кВт*ч затрат электроэнергии на 1 кг водорода.

Хранится жидкий водород в криогенных контейнерах, конструкция которых сильно отличается от конструкции композитного баллона для хранения газообразного водорода.

Резервуары для хранения и выдачи жидкого водорода, на 12-ти осных сцепных транспортёрах, ст. Балашиха.

Для производства используются высококачественные стали, предназначенные для требуемых температурных диапазонов. Резервуары оснащены фильтрами тонкой очистки жидкого водорода и пробоотборником специальной конструкции, и имеют высокоэффективную теплоизоляционную систему.

Однако, какой бы хорошей ни была изоляция, потери на испарение водорода существуют, и довольно-таки существенные. Они особенно заметны для небольших резервуаров с высоким соотношением поверхности к объему.

Наибольших успехов в плане уменьшения утечек добились специалисты BMW. Они разработали и испытали несколько автомобилей с водородным топливом, хранящимся в жидком виде в специальных баллонах. Им удалось уменьшить потери на испарение до 1,5 % массы в день.

Двигатель внутреннего сгорания BMW Hydrogen 7 может работать на бензине, или водороде. На Hydrogen 7 установлен бензобак 74 литра, и баллон для хранения 8 кг водорода.

Двигатель внутреннего сгорания BMW Hydrogen 7 может работать на бензине, или водороде. На Hydrogen 7 установлен бензобак 74 литра, и баллон для хранения 8 кг водорода.

При хранении жидкого водорода в стационарных контейнерах нужно учитывать одну особенность: хранение водорода в герметичных ёмкостях в жидком виде нерационально для небольших количеств водорода (менее 1 кг), так как утечка жидкого водорода для небольших количеств очень велика, а оборудование слишком дорогое.

Последние разработки в области контейнерного хранения водорода предлагают хранить водород независимо от условий заполнения. Баллоны могут быть заполнены жидким водородом при высоком или низком давлении, сжатым газообразным водородом при низкой или комнатной температуре, возможны и комбинации этих операций (если исходная температура баллона находится в диапазоне от 180 до 300 К). В этом случае водород хранится не в жидком состоянии, а как сжатый криогаз или смесь жидкого и газообразного водорода (в зависимости от условий). Кроме того, в таких системах могут использоваться сорбенты с большой удельной поверхностью. При заполнении жидким водородом обеспечивается высокая плотность и малые потери на испарение.

Обобщая вышенаписанное, подводим итоги:

Распределение молекул H2 в зависимости от условий хранения водорода.

Читайте также:  Вычислите при какой температуре осмотическое давление раствора

1. Энергоёмкость водорода, хранимого в газообразной форме под давлением до 400 атмосфер, очень маленькая. Баллоны, способные хранить водород под давлением 700 атмосфер, существенно дороже, и тоже обладают недостаточно высокой энергоёмкостью.

2. Стоимость хранения водорода в жидком виде относительно высокая, так как требует соответствующего оборудования с высокой стоимостью.

3. Уровень утечки жидкого водорода для небольших хранилищ, особенно в случае длительного времени хранения, очень высок.

Количество молекул водорода в зависимости от условий хранения.

Всё это заставляет искать новые и более эффективные способы хранения водорода. И они есть. Один из таких способов — это хранение водорода в твёрдых носителях (гидридах металлов), где возможно добиться плотности в 2,7 раза больше, чем в жидком водороде. И об этом в следующей статье.

Часть 6. Современные проблемы хранения водорода

================================================================

P. S. Ссылки на источники теперь находятся в группе Вконтакте!

Часть 1. Водородная энергетика: когда наступит будущее?

Часть 2. Водородная энергетика: методы получения водорода

Часть 3. Водородная энергетика: атомно-водородная технология

Часть 4. Водород в альтернативной энергетике

Источник

При каком давлении водород становится жидким

При каком давлении водород становится жидким

Гладышева Марина Алексеевна, 10А,школа №75, г. Черноголовка. Доклад на конференции «Старт в науку», МФТИ, 2004.

Привлекательность водорода как универсального энергоносителя определяется экологической чистотой, гибкостью и эффективностью процессов преобразования энергии с его участием. Технологии разномасштабного производства водорода достаточно хорошо освоены и имеют практически неограниченную сырьевую базу. Однако низкая плотность газообразного водорода, низкая температура его ожижения, а также высокая взрывоопасность в сочетании с негативным воздействием на свойства конструкционных материалов, ставят на первый план проблемы разработки эффективных и безопасных систем хранения водорода — именно эти проблемы сдерживают развитие водородной энергетики и технологии в настоящее время.

В соответствии с классификацией департамента энергетики США, методы хранения водородного топлива можно разделить на 2 группы:

Первая группа включает физические методы, которые используют физические процессы (главным образом, компрессирование или ожижение) для переведения газообразного водорода в компактное состояние. Водород, хранимый с помощью физических методов, состоит из молекул Н2 , слабо взаимодействующих со средой хранения. На сегодня реализованы следующие физические методы, хранения водорода:

Сжатый газообразный водород:

стационарные массивные системы хранения, включая подземные резервуары;

хранение в трубопроводах;

Жидкий водород: стационарные и транспортные криогенные контейнеры.

В химических методах хранение водорода обеспечивается физическими или химическими процессами его взаимодействия с некоторыми материалами. Данные методы характеризуются сильным взаимодействием молекулярного либо атомарного водорода с материалом среды хранения. Данная группа методов главным образом включает следующие:

цеолиты и родственные соединения;

Абсорбция в объёме материала (металлогидриды)

фуллерены и органические гидриды;

водореагирующие сплавы на основе алюминия и кремния.

Хранение газообразного водорода не является более сложной проблемой, чем хранение природного газа. На практике для этого применяют газгольдеры, естественные подземные резервуары (водоносные породы, выработанные месторождения нефти и газа), хранилища, созданные подземными атомными взрывами. Доказана принципиальная возможность хранения газообразного водорода в соляных кавернах, создаваемых путём растворения соли водой через боровые скважины.

Для хранения газообразного водорода при давлении до 100 Мпа используют сварные сосуды с двух- или многослойными стенками. Внутренняя стенка такого сосуда выполнена из аустенитной нержавеющей стали или другого материала, совместимого с водородом в условиях высокого давления, внешние слои – из высокопрочных сталей. Для этих целей применяют и бесшовные толстостенные сосуды из низкоуглеродистых сталей, расчитанных на давление до 40 – 70 Мпа.

Широкое распространение получило хранение газообразного водорода в газгольдерах с водяным бассейном (мокрые газгольдеры), поршневых газгольдерах постоянного давления (сухие газгольдеры), газгольдерах постоянного объёма (ёмкости высокого давления). Для хранения малых количеств водорода используют баллоны.

Следует иметь в виду, что мокрые, а также сухие (поршневые) газгольдеры сварной конструкции не обладают достаточной герметичностью. Согласно техническим условиям допускается утечка водорода при нормальной эксплуатации мокрых газгольдеров вместимостью до 3000 м 3 – около 1,65%, а вместимостью от 3000 м 3 и более — около 1,1% в сутки (считая на номинальный объём газгольдера).

Одним из наиболее перспективных способов хранения больших количеств водорода является хранение его в водоносных горизонтах. Годовые потери составляют при таком способе хранения 1 – 3%. Эту величину потерь подтверждает опыт хранения природного газа.

Газообразный водород возможно хранить и перевозить в стальных сосудах под давлением до 20 Мпа. Такие ёмкости можно подвозить к месту потребления на автомобильных или железнодорожных платформах, как в стандартной таре, так и в специально сконструированных контейнерах.

Для хранения и перевозки небольших количеств сжатого водорода при температурах от –50 до +60 0 С используют стальные бесшовные баллоны малой ёмкости до 12 дм 3 и средней ёмкости 20 – 50 дм 3 с рабочим давлением до 20 Мпа. Корпус вентиля изготавливают из латуни. Баллоны окрашивают в тёмно-зелёный цвет, они имеют красного цвета надпись “Водород”.

Баллоны для хранения водорода достаточно просты и компактны. Однако для хранения 2 кг Н 2 требуются болоны массой 33 кг. Прогресс в материаловедении даёт возможность снизить массу материала баллона до 20 кг на 1 кг водорода, а в дальнейшем возможно снижение до 8 – 10 кг. Пока масса водорода при хранении его в баллонах составляет примерно 2 – 3% от массы самого баллона.

Большие количества водорода можно хранить в крупных газгольдерах под давлением. Газгольдеры обычно изготовляют из углеродистой стали. Рабочее давление в них обычно не превышает 10 Мпа. Вследствие малой плотности газообразного водорода хранить его в таких ёмкостях выгодно лишь в сравнительно небольших количествах. Повышение же давление сверх указанного, например, до сотен мега Паскаль, во-первых, вызывает трудности, связанные с водородной коррозией углеродистых сталей, и, во-вторых, приводит к существенному удорожанию подобных ёмкостей.

Для хранения очень больших количеств водорода экономически эффективным является способ хранения истощённых газовых и водоносных пластах. В США насчитывается более 300 подземных хранилищ газа.

Читайте также:  Какое давление и пульс должен быть у девочки 9 лет

Газообразный водород в очень больших количествах хранится в соляных кавернах глубиной 365 м при давлении водорода 5 Мпа, в пористых водонаполненных структурах вмещающих до 20·10 6 м 3 водорода.

Опыт продолжительного хранения (более 10 лет) в подземных газохранилищах газа с содержанием 50 % водорода показал полную возможность его хранения без заметных утечек. Слои глины, пропитанные водой, могут обеспечивать герметичное хранение ввиду слабого растворения водорода в воде.

Хранение жидкого водорода

Среди многих уникальных свойств водорода, которые важно учитывать при его хранении в жидком виде, одно является особенно важным. Водород в жидком состоянии находится в узком интервале температур: от точки кипения 20К до точки замерзания 17К, когда он переходит в твёрдое состояние. Если температура поднимается выше точки кипения, водород мгновенно переходит из жидкого состояния в газообразное.

Чтобы не допустить местных перегревов, сосуды, которые заполняют жидким водородом, следует предварительно охладить до температуры, близкой к точки кипения водорода, только после этого можно заполнять их жидким водородом. Для этого через систему пропускают охлаждающий газ, что связано с большими расходами водорода на захолаживание ёмкости.

Переход водорода из жидкого состояния в газообразное связан с неизбежными потерями от испарения. Стоимость и энергосодержание испаряющегося газа значительны. Поэтому организация использования этого газа с точки зрения экономики и техники безопасности необходимы. По условиям безопасной эксплуатации криогенного сосуда необходимо, чтобы после достижения максимального рабочего давления в ёмкости газовое пространство составляло не менее 5 %.

К резервуарам для хранения жидкого водорода предъявляют ряд требований:

конструкция резервуара должна обеспечивать прочность и надёжность в работе, длительную безопасную эксплуатацию;

расход жидкого водорода на предварительное охлаждение хранилища перед его заполнением жидким водородом должен быть минимальным;

резервуар для хранения должен быть снабжён средствами для быстрого заполнения жидким водородом и быстрой выдачи хранимого продукта.

Главная часть криогенной системы хранения водорода – теплоизолированные сосуды, масса которых примерно в 4 – 5 раз меньше на 1 кг хранимого водорода, чем при баллонном хранении под высоким давлением. В криогенных системах хранения жидкого водорода на 1 кг водорода приходится 6 – 8 кг массы криогенного сосуда, а по объёмным характеристикам криогенные сосуды соответствуют хранению газообразного водорода под давлением 40 Мпа.

Жидкий водород в больших количествах хранят в специальных хранилищах объёмом до 5 тыс. м 3 . Крупное шарообразное хранилище для жидкого водорода объёмом 2850 м 3 имеет внутренний диаметр алюминиевой сферы 17,4 м 3 .

Хранение и транспортирование водорода в химически связанном состоянии

Преимущества хранения и транспортирование водорода в форме аммиака, метанола, этанола на дальние расстояния состоят в высокой плотности объёмного содержания водорода. Однако в этих формах хранения водорода среда хранения используется однократно. Температура сжижения аммиака 239,76 К, критическая температура 405 К, так что при нормальной температуре аммиак сжижается при давлении 1,0 Мпа и его можно транспортировать по трубам и хранить в жидком виде. Основные соотношения приведены ниже:

1 м 3 Н 2 (г) » 0,66 м 3 NH3 » 0?75 дм 3 Н 2 (ж);

1 т NH3 » 1975 м 3 Н 2 + 658 м 3 N2 – 3263 МДж;

В диссоциаторах для разложения аммиака (крекерах), которое протекает при температурах примерно порядка 1173 – 1073 К и атмосферном давлении, используется отработанный железный катализатор для синтеза аммиака. Для получения одного кг водорода затрачивается 5,65 кг аммиака. Что касается затрат тепла на диссоциацию аммиака при использовании этого тепла со стороны, то теплота сгорания полученного водорода может до 20% превосходить теплоту сгорания использованного в процессе разложения аммиака. Если же для процесса диссоциации используется водород, полученный в процессе, то КПД такого процесса (отношение теплоты полученного газа к теплоте сгорания затраченного аммиака) не превышает 60 – 70%.

Водород из метанола может быть получен по двум схемам: либо методом каталитического разложения:

с последующей каталитической конверсией СО, либо каталитической паровой конверсии в одну стадию:

Обычно для процесса используют цинк-хромовый катализатор синтеза метанола. Процесс протекает при 573 – 673 К. Метанол можно использовать как горючее для процессов конверсии. В этом случае КПД процесса получения водорода составляет 65 – 70% (отношение теплоты полученного водорода к теплоте сгорания затраченного метанола); если теплота для процесса получения водорода подводится извне, теплота сгорания водорода, полученного методом каталитического разложения, на 22%, а водорода, полученного методом паровой конверсии, на 15% превосходят теплоту сгорания затраченного метанола.

К сказанному следует добавить, что при создании энерго-технологичекой схемы с использованием отходящего тепла и применения водорода, полученного из метанола, аммиака или этанола, можно получить КПД процесса более высокий, чем при использовании указанных продуктов как синтетических жидких горючих. Так, при прямом сжигании метанола и газотурбинной установке КПД составляет 35%, при проведении же за счёт тепла отходящих газов испарения и каталитической конверсии метанола и сжигания смеси СО+Н 2 КПД возрастает до 41,30%, а при проведении паровой конверсии и сжигания полученного водорода – до 41,9%.

Гидридная система хранения водорода

В случае хранения водорода в гидридной форме отпадает необходимость в громоздких и тяжёлых баллонах, требуемых при хранении газообразного водорода в сжатом виде, или сложных в изготовлении и дорогих сосудов для хранения жидкого водорода. При хранении водорода в виде гидридов объём системы уменьшается примерно в 3 раза по сравнению с объёмом хранения в баллонах. Упрощается транспортирование водорода. Отпадают расходы на конверсию и сжижение водорода.

Водород из гидридов металлов можно получить по двум реакциям: гидролиза и диссоциации.

Методом гидролиза можно получать вдвое больше водорода, чем его находится в гидриде. Однако этот процесс практически необратим. Метод получения водорода термической диссоциацией гидрида даёт возможность создать аккумуляторы водорода, для которых незначительное изменение температуры и давления в системе вызывает существенное изменение равновесия реакции образования гидрида.

Читайте также:  При каком давление загорается лампа давления масла

Стационарные устройства для хранения водорода в форме гидридов не имеет строгих ограничений по массе и объёму, поэтому лимитирующим фактором выбора того или иного гидрида буде, по всей вероятности, его стоимость. Для некоторых направлений использования может оказаться полезным гидрид ванадия, поскольку он хорошо диссоциирует при температуре, близкой в 270 К. Гидрид магния является относительно недорогим, но имеет сравнительно высокую температуру диссоциации 560 – 570 К и высокую теплоту образования. Железо-титановый сплав сравнительно недорог, а гидрид его диссоциирует при температурах 320 – 370 К с низкой теплотой образования. Использование гидридов имеет значительные преимущества в отношении техники безопасности. Повреждённый сосуд с гидридом водорода представляет значительно меньшую опасность, чем повреждённый жидководородный танк или сосуд высокого давления, заполненный водородом.

В настоящий момент в Институте проблем химической физики РАН в Черноголовке ведутся работы по созданию аккумуляторов водорода на основе гидридов металла.

Список используемой литературы :

1. Справочник. “Водород. Свойства, получение, хранение, транспортирование, применение”. Москва “Химия” — 1989 г.

Источник

Жидкий водород: свойства и применение

Жидкий водород – одно из агрегатных состояний водорода. Выделяют еще газообразное и твердое состояние этого элемента. И если газообразная форма хорошо знакома многим, то остальные два крайних состояния вызывают вопросы.

История

Жидкий водород был получен только в тридцатых годах прошлого века, но до этого химия прошла долгий путь по освоению такого способа хранения газов и применения.

Искусственное охлаждение экспериментально начали применять в середине восемнадцатого века в Англии. В 1984 году получили сжиженный диоксид серы и аммиак. На основе этих исследований через двадцать лет был разработан первый холодильник, а еще через тридцать лет Перкинс оформил официальный патент на свое изобретение. В 1851 году по другую сторону Атлантического океана Джон Гори заявил о правах на создание кондиционера.

До водорода дело дошло только в 1885 году, когда поляк Вроблевский анонсировал в своей статье тот факт, что точка кипения этого элемента равна 23 Кельвинам, пик температуры – 33 Кельвинам, а критическое давление равно 13 атмосферам. После этого заявления создать жидкий водород попытался Джеймс Дьюар в конце 19-го века, но стабильной субстанции у него не получилось.

Физические свойства

Данное агрегатное состояние характеризуется очень низкой плотностью вещества – сотые доли граммов на кубический сантиметр. Это дает возможность использовать относительно маленькие емкости, чтобы хранить жидкий водород. Температура кипения равна всего 20 Кельвинам (-252 по Цельсию), а замерзает эта субстанция уже при 14 Кельвинах.

Жидкость не имеет запаха, цвета и вкуса. Смешивание ее с кислородом может привести к взрыву в половине случаев. При достижении температуры кипения водород переходит в газообразное состояние, и его объем увеличивается в 850 раз.

После сжижения водород помещается в изолированные контейнеры, в которых поддерживается низкое давление и температура в промежутке от 15 до 19 Кельвинов.

Распространенность водорода

Жидкий водород производится искусственно и в естественной среде не встречается. Если не брать в расчет агрегатные состояния, то водород – самый распространенный элемент не только на планете Земля, но и во Вселенной. Из него состоят звезды (в том числе и наше Солнце), им заполнено пространство между ними. Водород принимает участие в реакциях термоядерного синтеза, а также может образовывать облака.

В земной коре этот элемент занимает всего лишь около процента от всего количества вещества. Его роль в нашей экосистеме можно оценить по тому факту, что число атомов водорода по количеству уступает только кислороду. На нашей планете практически все запасы Н2 находятся в связанном состоянии. Водород — составная часть всех живых существ.

Использование

Жидкий водород (температура по Цельсию -252 градуса) используется в виде формы для хранения бензина и других производных нефтепереработки. Кроме того, в данный момент создаются концепции транспорта, который смог бы использовать сжиженный водород как топливо вместо природного газа. Это позволило бы сократить затраты на добычу ценных ископаемых и снизить выбросы в атмосферу. Но пока оптимальной конструкции двигателя так и не было найдено.

Жидкий водород активно используется физиками как охладитель в их экспериментах с нейтронами. Так как масса элементарной частицы и ядра водорода практически равны, обмен энергией между ними является весьма эффективным.

Преимущества и препятствия

Жидкий водород дает возможность замедлить нагревание атмосферы и уменьшить количество парниковых газов, если применять его в качестве топлива для автомобилей. При его взаимодействии с воздухом (после прохождения через двигатель внутреннего сгорания) будет образовываться вода и незначительно количество оксида азота.

Однако у этой идеи есть и свои трудности, например, способ хранения и транспортировки газа, а также повышенная опасность воспламенения или даже взрыва. Даже при условии соблюдения всех мер предосторожности предотвратить испарение водорода не удается.

Ракетное топливо

Жидкий водород (температура хранения до 20 Кельвинов) является одним из компонентов ракетного топлива. У него есть несколько функций:

  1. Охлаждение элементов двигателя и защита сопла от перегрева.
  2. Обеспечение тяги после смешивания с кислородом и нагревания.

Современные ракетные двигатели работают на комбинации водород-кислород. Это помогает достичь нужной скорости для преодоления притяжения земли и при этом сохранить все части летательных аппаратов, не подвергая их действию чрезмерных температур.

На данный момент существует только одна ракета, которая полностью использует водород в качестве топлива. В большинстве случаев жидкий водород необходим для отделения верхних ступеней ракет или в тех аппаратах, которые большую часть работы проведут в вакууме. От исследователей поступали предложения использовать наполовину замороженную форму этого элемента, чтобы повысить его плотность.

Источник

Источник