Какое давление при выстреле из карабина

Максимальное давление в гладкоствольном ружье

Величина максимального давления (Рмах) пороховых газов во взаимосвязи c начальной скоростью снаряда определяют показатели качества выстрела, для дробовой осыпи – резкость, равномерность, постоянство боя и кучность в той степени, на сколько это может зависеть от патрона. От него зависит срок службы и надежность при эксплуатации ружья.

Есть два официальных метода измерения Рмах:

  • пьезо — основывается на пьезоэлектрическом эффекте. При сжатии некоторых кристаллов на их боковых поверхностях возникает разность потенциалов, пропорциональная усилию сжатия. Им пользуются производители патронов и оружия в большинстве стран;
  • крешерный метод — по деформации медного цилиндра, для оружия изготовленного в СССР и РФ применяется до сей поры испытательные патроны с давлением определенным крешерным методом.
  • Используется так же метод измерения давления в стволе тензо датчиком, который реагирует на изменение размеров ствола под действием давления пороховых газов. Это метод позволяет измерять давление без сверления специального отверстия в патроне, как это предусмотрено при испытании в баллистическом стволе. Тензодатчик может быть установлен на любое ружье. Тензодатчик по точности измерений не уступает пьезо.

Промышленностью выпускается комплекты оборудования с тензодатчиком, позволяющие на основе любого ружья в сочетании с хронографами создать мобильный баллистический измерительный комплекс.

Фотоматериал предоставлен автором

Фотоматериал предоставлен автором

Фотоматериал предоставлен автором

Фотоматериал предоставлен автором

Крешеный метод фиксирует только величину Рмах, в то время как пьезо- и тензодатчики позволяют измерять давление на всем протяжении ствола.

ПМК и ГОСТ предусматривают разные величины Рмах в зависимости от способа измерения.

Это вносит некоторую путаницу, производители патронов при их маркировке указывают Рмах по пьезо методу измерения.
Для не магнум ружей 12 калибра среднее максимальное экспуатационное давление измеренное крешерным методом 60МПа соответствует 74 МПа если давление измеряется пьезо или тензо датчиком. Для магнум ружей 90 МПа (креш) или 104 МПа (пьезо).

Те страны, которые являются членами ПМК — Постоянной Международной Комиссии по испытанию ручного огнестрельного оружия Брюссельской Конвенции, имеют одинаковые условия испытания охотничьего оружия. В соответствии с решением ПМК испытательные патроны должны иметь среднее максимальное давление пороховых газов на 30% больше среднего максимального давления пороховых газов эксплуатационных патронов.

Рмах измеряется датчиком, установленным на расстоянии 25-30 мм от казенного среза.

С 1984 г. в СССР изменены условия проверки на прочность гладкоствольных ружей, согласно ГОСТ 23746-79 «Оружие спортивное и охотничье. Параметрические ряды калибров оружия и патронов к нему».

Ружья, предназначенные для стрельбы патронами со средним значением максимального давления пороховых газов в канале ствола, не превышающим 65 МПа (калибры 10 и 12), 68 МПа (калибр 16) и 72 МПа (калибры 20, 28 и 32), подвергают испытаниям патронами, имеющими среднее значение максимального давления пороховых газов для 10-го и 12-го калибров — 84,5 МПа, для 16-го — 68 МПа 918, для 20, 28-го и 32-го калибров — 68 МПа 969 кгс/см2, на стволы и коробку ружья наносят клеймо — букву П в круге — (П)

Если же оружие изготавливается для стрельбы патронами увеличенной мощности со средним значением максимального давления пороховых газов, равным 90 МПа, все ружья с длиной патронника 76 и 89 мм, то для его испытания применяют патроны со средним значением максимального давления пороховых газов, равным 120 МПа. В этом случае на стволы и коробку ружья наносят клеймо, состоящее из буквы П в двойном круге — О)

Кроме того, при вышеописанных испытаниях на прочность оружия делают еще один дополнительный выстрел вторым патроном со средним значением промежуточного давления пороховых газов в 162 мм от казенного среза ствола не менее 50 МПа.
С.М. Шейнин пишет, что для обеспечения требований ПМК возникли трудность по созданию испытательного патрона для второго выстрела т.к. советская промышленность не выпускала порохов такой степени прогрессивности позволяющие получить такие высокие давления в сечении 162 мм. Патроны удалось создать на основе пороха Барс.

Некоторые производители испытывают свои ружья давлением, превышающим требования ПМК. Так Фабарм испытывает давлением 1630 бар, а Браунинг 1730 бар . Метод измерения давления пьезо. Информация о величине испытательного давления наносится на стволы и ствольную коробку.

Требования ПМК и ГОСТ касающиеся патронов, распространяются только на патроны выпускаемые промышленностью.

Современные гладкоствольные ружья обладают значительным запасом прочности.

Главный конструктор Ижевского механического завода Н. Л. Изметинский сообщал об испытаниях ружей ИЖ-54 12 калибра и ИЖ- 58 16 калибра. Стреляли патронами, в которых постепенно увеличивали вес заряда пороха Сокол до 6г. Вес снаряда дроби при этом оставался неизменным 35 г в 12 калибре и 30 г в шестнадцатом. После чего никаких повреждений и изменений в ружьях обнаружено не было. Только при увеличении навески пороха Сокол до 7 г при весе дроби 35 г в обоих стволах ИЖ-54 были зафиксированы раздутия. Давление при этом было выше 2000 бар, т.е. более чем в три раза превышало давление нормального патрона.

Однако из этого не следует делать вывод о возможности применении таких навесок при снаряжении патронов для охоты.

Без специального оборудования, баллистического ствола определить максимальное давление не возможно. Рмах выше нормы, когда поддуло капсюль или вырвало трубку из донца гильзы или вообще не открывается ружье.

По отдаче нельзя судить о величине максимального давления.

Энергия отдачи находится в сложной зависимости от величины Рмах. Возможен вариант, что том же весе снаряда и при той же начальной скорости, но при более высоком Рмах, энергия отдачи уменьшится. А при превышении вес снаряда и веса заряда быстрогорящего спортивного пороха возможно повреждение ружья, при этом на величине энергии отдачи это никак не отразится.

Если допустить, что в период роста давления поверхность горения пороха постоянна, то Рмах меняется:

  • более чем пропорционально квадрату веса заряда пороха;
  • пропорционально квадрату скорости горения, силы пороха;
  • прямо пропорционально весу снаряда;
  • обратно пропорционально прогрессивности горения пороха;
  • увеличивается с увеличением плотности заряжания.

Давление достигает своего максимума в патроннике, на расстоянии 30 — 60 мм от казенного среза.

фото: fotolia.com

В нарезном стрелковом оружии и ствольной артиллерии величина Рмах патрона, выстрела ограничивается и подгоняется под величину Р мах оружия. В гладкоствольном патроне, кроме эксплуатационного давления ружья приходится учитывать то, что от Рмах прямо пропорционально зависит степень деформации свинцовой дроби. Что является основным фактором, влияющим на скорость удара и показатели качества осыпи.

60 — 65 МПа (600 -650 бар) оптимальное Рмах, обеспечивающее приемлемую степень деформации свинцовой промышленной твердой дроби ЛОТ, ЛСТ, ШОТ.

При использовании плакированной никелем или медью свинцовой дроби Рмах может быть выше 65 МПа.

При снаряжении с несжимаемыми буферными составами типа крахмал и со стальной дробью Рмах не должно превысить среднее максимальное эксплуатационное давление ружья. Следует обратить внимание, что при применении крахмала, при прочих равных, Рмах увеличивается до 12 МПа (120 бар).

Рассматривая влияние Рмах на начальную скорость снаряда следует отметить, чтоначальная скорость снаряда пропорциональна корню квадратному от интеграла давления по длине ствола, он же площадь под кривой давления на графике изменения давления и осью абсцисс от момента начала движения до вылета снаряда со ствола.

Величина интеграла в основном определяет вес заряда пороха и его свойства.

Меняя такие характеристики условий заряжания, как плотность заряжания, мощность капсюля, тип обтюрирующего элемента, при неизменном весе заряда пороха, меняется величина Рмах, форма кривой изменения давления по длине ствола и место пика в стволе. Но при этом площадь под кривой (интеграл) меняется незначительно.

Так протоколом отстрела патрона Главпатрон на баллистическом измерительном комплексе Тульского патронного завода зафиксировано, что увеличение Рмах с 562 до 662 бар увеличивает начальную скорость с 408,4 до 416,8 м/с.

Зависимость приращения начальной скорости от приращение Рмах нелинейная, зависит от уровне давления типа пороха и с увеличение приращения Рмах уменьшается.

Фотоматериал предоставлен автором

Производители патронов стараются поддерживать нижний уровень Рмах приблизительно 60МПа (600 бар). Это связано с особенностями горения нитроцеллюлозных порохов.

При уменьшении давления в стволе ниже допустимого, величина которого зависит от характеристик пороха, происходить переход в аномальный режим горения. Этот режим характерен тем, что порох сгорает не полностью. В продуктах горения появляются окислы азота, которые являются промежуточными продуктами горения, при этом выделение тепловой энергии уменьшается в два раза.

При значительном уменьшении давления нитроцеллюлозные пороха прекращают горение.

Промышленностью выпускаются патроны в 70 мм гильзе, с давлением превышающим среднее максимальное эксплуатационное 74 бар пьезо для ружей с длиной патронника 70 мм. О чем делается специальная предупреждающая надпись на каждом патроне.

Согласно ГОСТ Р 50530 2010 патроны повышенной мощность должны для гладкоствольного оружия должны иметь отличительную маркировку, позволяющую их идентифицировать. данная маркировка должна быть нанесена одним из следующих способов.

  • окраска донной части гильзы в черный цвет;
  • надпись на корпусе гильзы « Max. 1050 bar»
  • надпись на корпусе гильзы «For a weapon proofed by 1320 bar».

А на упаковке для патронов повышенной мощности должна быть нанесена маркировка, ясно указывающая на то, что этими патронами можно стрелять только из оружия, прошедшего специальное повышенное испытание. Пример – «Только для оружия испытанного давлением 1320бар».

Михаил Багдашкин
18 июля 2013 в 00:00

Источник

За доли секунды четыре периода выстрела

Стрельба из 23-мм ружья КС-23

Стрельба из 23-мм ружья КС-23

Слово «выстрел» в артиллерии употребляется в нескольких значениях и обозначает: совокупность процессов, протекающих в стволе огнестрельного оружия; комплект боеприпасов, предназначенных для стрельбы из этого оружия; момент вылета пули (снаряда) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда. Во внутренней баллистике слово «выстрел» употребляется в его первом значении.

Явлением выстрела называется совокупность механических, физических, химических, термодинамических и газодинамических процессов, проходящих в оружии от момента начала воспламенения заряда до момента окончания истечения пороховых газов из канала ствола оружия после вылета снаряда.

Явление выстрела включает следующие процессы:
— воспламенение пороха;
— горение пороха;
— образование пороховых газов;
— врезание ведущих поясков в нарезы;
— поступательное движение пули (снаряда);
— трение ведущих поясков о поверхность канала ствола;
— вращательное движение пули (снаряда);
— расширение пороховых газов;
— движение пороховых газов;
— движение элементов боевого заряда;
— изменение состава пороховых газов;
— теплопередача от пороховых газов к стенкам ствола;
— нагрев ствола;
— деформация ствола, пули (снаряда), гильзы;
— износ и разгар канала ствола;
— вытеснение воздуха из канала ствола;
— движение подвижных частей автоматики оружия;
— истечение пороховых газов из канала ствола;
— образование дульной волны;
— образование дульного пламени.

Перечисленные процессы могут протекать в одном или в нескольких периодах. Так, воспламенение пороха и врезание ведущих поясков в нарезы происходит в предварительном периоде, образование дульной волны — в периоде последействия. А движение пороховых газов протекает в четырех периодах — предварительном (пиростатическом), пиродинамическом, термодинамическом и последействия. Наибольшее число процессов совершается одновременно в пиродинамическом периоде, поэтому он является наиболее сложным и общим.

Перечисленные процессы не равноценны по их роли при решении основной задачи пиродинамики, т. е. с точки зрения раскрытия характера движения снаряда в канале ствола орудия. К основным процессам явления выстрела относятся:
— горение пороха;
— образование пороховых газов;
— расширение пороховых газов;
— поступательное движение снаряда;
— истечение пороховых газов из канала ствола.

Эти процессы во внутренней баллистике изучаются подробно.

Следует отметить, что горение пороха происходит сначала в постоянном объеме, а с момента начала движения пули (снаряда) — в переменном объеме, расширение пороховых газов происходит как при горении пороха, так и после его горения.

Во время выстрела из стрелкового оружия происходят следующие явления.

Стрельба из 7,62-мм снайперской винтовки Драгунова СВД-С

Стрельба из 7,62-мм снайперской винтовки Драгунова СВД-С

При спуске курка с боевого взвода боек ударяет по капсюлю боевого патрона, досланного в патронник, вызывая этим мгновенный взрыв ударного состава капсюля. Возникающее при этом сильное пламя через затравочные отверстия в дне гильзы проникает к пороховому заряду, воспламеняя со всех сторон зерна пороха. Пороховой (боевой) заряд, почти одновременно загораясь, выделяет большое количество сильно нагретых упругих пороховых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. По мере сгорания заряда пороховым газам становится тесно в пороховой камере (патроннике). Стремясь расшириться, они давят во все стороны с одинаковой силой, в том числе и на пулю. Встречая сопротивление прочных стенок ствола и дна гильзы, упирающейся в личинку затвора, пороховые газы распространяются в сторону наименьшего сопротивления, толкая перед собой пулю. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику, препятствует прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей, при встрече с воздухом образуют пламя и ударную волну, которая является источником звука при выстреле.

В этом и состоит явление выстрела. Он протекает очень быстро. Так, пуля в стволе 7,62 мм магазинной винтовки Мосина образца 1891/30 гг. движется всего лишь около 0,0015 сек.

При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола (например, автомат Калашникова АК-74, ручной пулемет Калашникова РПК-74; снайперская винтовка Драгунова СВД; единый пулемет Калашникова ПКМ), часть пороховых газов после прохождения пулей газоотводного отверстия устремляется через него в газовую камеру, ударяет в поршень и отбрасывает поршень с затворной рамой (толкатель с затвором) назад.

Пока затворная рама (стебель затвора) не пройдет определенное расстояние, обеспечивающее вылет пули из канала ствола, затвор продолжает запирать канал ствола. После вылета пули из канала ствола происходит его отпирание; затворная рама и затвор, двигаясь назад, сжимают возвратную (возвратно-боевую) пружину; затвор при этом извлекает из патронника гильзу. При движении вперед под действием сжатой пружины затвор досылает очередной патрон в патронник и вновь запирает канал ствола.

При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии отдачи (например, пистолет Макарова ПМ, автоматический пистолет Стечкина АПС, пистолет-пулемет Шпагина образца 1941 года ППШ), давление газов через дно гильзы передается на затвор и вызывает движение затвора с гильзой назад. Это движение начинается в момент, когда давление пороховых газов на дно гильзы преодолевает инерцию затвора и усилие возвратно-боевой пружины. Пуля к этому времени уже вылетает из канала ствола. Отходя назад, затвор сжимает возвратно-боевую пружину, затем под действием энергии сжатой пружины затвор движется вперед и досылает очередной патрон в патронник.

В некоторых образцах оружия (например, крупнокалиберный пулемет Владимирова КПВ, станковый пулемет «Максим» обр. 1910 года) под действием давления пороховых газов на дно гильзы вначале движется назад ствол вместе со сцепленным с ним затвором (замком). Пройдя некоторое расстояние, обеспечивающее вылет пули из канала ствола, ствол и затвор расцепляются, после чего затвор по инерции отходит в крайнее заднее положение и сжимает (растягивает) возвратную пружину, а ствол под действием пружины возвращается в переднее положение.

Стрельба из 5,45-мм автомата Калашникова АКС-74 с магазином емкостью 60 патронов

Стрельба из 5,45-мм автомата Калашникова АКС-74
с магазином емкостью 60 патронов

Явление выстрела характеризуется кратковременностью и сложностью, оно длится десятые и даже сотые доли секунды (0,001-0,06 сек), причем за столь короткий промежуток времени происходит множество процессов различной природы, связанных друг с другом.

Во время выстрела развиваются высокие давления, достигающие тысяч атмосфер, и высокие температуры до 3000 °C.

При сгорании порохового заряда примерно 25-35% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25% энергии — на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.

Несмотря на кратковременность явления выстрела, его можно разделить на четыре последовательных периода.

Предварительный (или пиростатический) период длится от момента начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола по мере горения пороха количество пороховых газов увеличивается, в связи с чем быстро нарастает и давление газов, необходимое для того, чтобы сдвинуть пулю (снаряд) с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Когда оно достигает определенной величины, достаточной для преодоления сил сопротивления движению (обжимки пули в дульце гильзы, врезания пули в нарезы и др.), пуля начинает свое движение. Давление пороховых газов, которое необходимо для полного врезания пули в нарезы, называется давлением форсирования. В стрелковом оружии оно колеблется в пределах 25-50 МПа (250-500 кг/кв.см) при стрельбе оболочечными пулями, в зависимости от устройства нарезов, массы пули и твердости ее оболочки (например, у стрелкового оружия под 7,62 мм автоматный патрон образца 1943 года давление форсирования равно около 30 МПа (300 кг/кв.см).

Горение порохового заряда в этот период происходит в постоянном объеме, оболочка (поясок) пули (снаряда) врезается в нарезы мгновенно, а ее движение начинается сразу же при достижении в канале ствола давления форсирования.

Стрельба из 7,62-мм единого пулемета Калашникова ПКМ

Стрельба из 7,62-мм единого пулемета Калашникова ПКМ

Первый (или основной) пиродинамический период длится от начала движения пули (снаряда) до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда пуля (снаряд) еще не приобрела большую скорость движения по каналу ствола, количество газов растет значительно быстрее, чем объем запульного (заснарядного) пространства (пространство между дном пули (снаряда) и дном гильзы), в силу чего давление газов в канале ствола быстро повышается и достигает наибольшей величины. Например, у стрелкового оружия, рассчитанного на использование 7,62 мм автоматного патрона образца 1943 года — 280 МПа (2800 кг/кв.см), а под 7,62 мм винтовочный патрон — 290 МПа (2900 кг/кв.см). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути (снарядом 4-10 калибров). Затем, вследствие значительного увеличения скорости движения пули (снаряда), объем запульного пространства увеличивается быстрее притока новых газов, и давление в канале ствола начинает постепенно снижаться. В конце горения пороха давление пороховых газов составляет примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Максимальное давление, которое развивают пороховые газы в стволе 7,62 мм магазинной винтовки Мосина образца 1891/30 гг. при стрельбе легкой пулей — 285 МПа (2850 кг/кв.см), при стрельбе тяжелой пулей — до 320 МПа (3200 кг/кв.см). Максимальное давление пороховых газов в стволе 5,6 мм малокалиберной винтовки и пистолета равно 130 МПа (1300 кг/кв.см), а в стволе 7,62 мм револьвера «Наган» образца 1895 года — 110 МПа (1100 кг/кв.см).

Второй термодинамический период длится от момента полного сгорания порохового заряда до момента вылета пули (снаряда) из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и дальнейшее движение пули (снаряда) происходит под действием постоянного, свободно расширяющегося количества пороховых газов, которые, благодаря своей упругости, обладают еще большим запасом энергии; продолжая расширяться, они увеличивают скорость движения пули. Спад давления во втором периоде происходит быстрее, чем в конце первого периода, и у дульного среза дульное давление (т. е. давление пороховых газов в момент вылета пули из канала ствола) составляет у орудия 1/3, у различных образцов стрелкового оружия — 1/5 максимального давления — от 20 (200 кг/кв.см до 90 МПа (900 кг/кв.см). Например, у 5,6 мм малокалиберной винтовки ТОЗ-8 — около 20 МПа (200 кг/кв.см); у 7,62 мм магазинной винтовки Мосина образца 1891/30 гг. оно равно 41,6 МПа (416 кг/кв.см); у 7,62 мм самозарядного карабина Симонова СКС — 39 МПа (390 кг/кв.см), у 7,62 мм станкового пулемета Горюнова — 57 МПа (570 кг/кв.см). Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

Характер изменения давления пороховых газов в канале ствола и нарастания скорости движения пули при стрельбе из винтовки обр. 1891/30 гг. и малокалиберной винтовки показан в таблице 1.

У некоторых видов стрелкового оружия, особенно короткоствольных (например у пистолета Макарова ПМ), второй период отсутствует, так как пуля вылетает из канала ствола раньше, чем успевает полностью сгореть пороховой заряд.

Третий период, или период последействия газов, длится от момента вылета пули (снаряда) из канала ствола до момента окончания истечения пороховых газов из канала ствола и прекращения действия пороховых газов на пулю (снаряд). В течение этого периода пороховые газы, вырываясь из канала ствола со скоростью 1200-2000 м/сек (значительно большей, чем скорость пули), продолжают на некотором расстоянии от дульного среза оружия (до 20 см) оказывать давление на дно пули и сообщают ей дополнительную скорость — до тех пор, пока сопротивление окружающей воздушной среды не станет равным давлению газов на дно пули. Следовательно, по мере продвижения пули в канале ствола скорость ее движения непрерывно возрастает, достигая наибольшей (максимальной) в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули (снаряда) будет уравновешено сопротивлением воздуха.

Стрельба из 23-мм спаренной зенитной установки ЗУ-23-2

Стрельба из 23-мм спаренной зенитной установки ЗУ-23-2

В образцах стрелково-артиллерийского вооружения обычно имеют место все перечисленные периоды и только в редких случаях, когда окончание горения пороха происходит после вылета снаряда, отсутствует термодинамический период. В минометах, как правило, отсутствует период форсирования.

После прохождения дульного среза оружия пуля (снаряд) имеет максимальную скорость.

Нужно отметить, что характер нарастания давления пороховых газов в канале ствола в значительной мере зависит от плотности порохового заряда. С увеличением плотности заряда резко повышается скорость горения пороха, а следовательно, и нарастание давления газов, вплоть до возникновения детонации. Поэтому, во избежание несчастных случаев, не следует стрелять патронами с глубоко посаженными пулями.

Иногда после удара бойка по капсюлю выстрела может не произойти или он последует с некоторым запозданием. В первом случае происходит осечка, а во втором — затяжной выстрел.

Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Как известно, с повышением процента влажности порох горит медленнее, отчего и нарастание давления пороховых газов в канале ствола может происходить также замедленней. Поэтому при отсыревшем пороховом заряде возможен затяжной выстрел, при котором между ударом бойка по капсюлю и звуком выстрела проходит заметный промежуток времени. При повышенной влажности заряда, а также недостаточной мощности капсюля луч пламени от взрыва капсюльного состава не может произвести одновременное зажжение всех пороховых зерен, а воспламеняет лишь близлежащие слои пороха, от которых следующие слои загораются через некоторый промежуток времени. В связи с этим, если после спуска курка выстрела не последовало, стрелок не должен торопиться с перезаряжанием оружия, а выждать несколько секунд, чтобы не мог произойти взрыв порохового заряда при открытом затворе и как следствие ранение стрелка и порча оружия. Если осечка произойдет при стрельбе из станкового гранатомета СПГ-9, то перед его разряжанием необходимо выждать не менее одной минуты.

В этом отношении наибольшую осторожность нужно проявлять при стрельбе патронами, длительное время хранившимися без герметической упаковки и в недостаточно сухом месте. Поэтому необходимо оберегать боеприпасы от влаги и содержать оружие в исправном состоянии.

Сергей Монетчиков
Фото Владимира Николайчука
и из архива автора
Братишка 07-2009

Источник

Читайте также:  Какое давление должно быть в пропановом баллоне