Какое давление называется абсолютным

збыточное давление, абсолютное давление, нормальное атмосферное давление

Несмотря на всю тривиальность и простоту вопроса, случается, что люди не вполне понимают суть понятий «абсолютное давление», «избыточное давление», «дифференциальное давление», (нормальное) «атмосферное давление» и др., путая их или не понимая их не только количественное, но и качественное отличие друг от друга. На этой странице мы решими написать несколько слов о понятии различных давлений. Мы не стремились представить ниже полную информацию по этому вопросу — ее можно без труда найти, например, в Википедии — а старались, наоборот, изложить основной смысл этих понятий кратко.

Абсолютное давление

Понятие «абсолютного давления» относится к способу указания давления относительно точки отсчета. Абсолютное давление — это то давление, для указания которого используется, в качестве точки отсчета, абсолютный вакуум. Предполагается, что не может существовать давления, меньшего, чем абсолютный вакуум — следовательно, относительно него любое давление может быть обозначено положительным числом.

То абсолютное давление, которое находится между абсолютным вакуумом и давлением, которое принято считать имеющемся на уровне моря (нормальное атмосферное давление = 101325 Па ≈ 760 мм ртутного столба ≈ 1 абсолютный бар), является частичным вакуумом.

То абсолютное давление, значение которого выше уровня нормального атмосферного давления, может быть также обозначено как избыточное давление, с точкой отсчета, за которую принято стандартное атмосферное давление. Абсолютное давление равно избыточному давлению плюс атмосферному давлению.

На письме, то, что указывается именно абсолютное давление, иногда подчеркивают литерой а как в русском, так и в английском и немецком языках, например: бар(а). Например, давление на уровне моря примерно составляет 1 бар(а).

Избыточное давление

Понятие избыточного давления также, как и абсолютного давления, относится к точке отсчета для указания давления. Избыточное давление — это то давление, для указания которого используется, в качестве точки отсчета, нормальное атмосферное давление.

Избыточное давление равно абсолютному давлению минус атмосферное давление. Например, давление на уровне моря, которое составляет 1 бар(а), может быть также указано как избыточное давление, составляющее 0 бар(и).

На письме указание на избыточное давление иногда подчеркивается литерой и в русском языке, g в английском (от слова gauge, то есть прибор[ное давление] — т.к. на манометрах обычно отображается именно избыточное давление), и литерой ü в немецком (от слова Überdruck, то есть «сверхдавление»).

Атмосферное давление, нормальное атмосферное давление

Понятие атмосферного давления качественно отличается от понятий избыточного и абсолютного давления, и относится не к точке отсчета, а к месту измерения. Атмосферное давление — это давление, имеющееся в какой-либо точке измерения на Земле. Атмосферное давление может сильно варьироваться в зависимости от высоты и погодных условий. Что касается точки отсчета, то атмосферное давление — всегда абсолютное.

В качестве нормального атмосферного давления приняты, в рамках разных стандартов, разработанных разными организациями, разные значения — наиболее распространенным, однако, является принятие за нормальное атмосферного давления 101325 Па. Среди европейских производителей оборудования принято также условно считать это давление соответствующим 1 бару.

Дифференциальное давление

Дифференциальное давление — это разница между давлением в двух точках измерения. Оно не является ни абсолютным, ни избыточным, и используется обычно как показатель падения давления на каком-либо оборудовании или его составляющем компоненте (чаще всего — на фильтрах для очистки сжатого возудха и газов).

Источник

Абсолютное и относительное давление

Чтобы лучше разобраться в сути понятия, необходимо напомнить, что все газообразные тела имеют тенденцию расширяться. Следующий эксперимент демонстрирует такое свойство, как влияние атмосферного давления на количество воздуха, находящегося в сосуде.

 Рисунок 1 в общем изображении.

 В этом примере сосуд — воздушный шар без воздуха, оснащеннный краном. Воздушный шар будет «гибким» (вялым), даже если воздух уже находится внутри него.

Закрытие крана не будет изменять внутреннее давление, которое будет таким же, как и внешнее давление. Количество молекул воздуха внутри воздушного шара останется постоянным.
Воздушный шар помещен внутри прозрачного колокола, к которому присоединен вакуумный насос. В этом пространстве воздушный шар окружен воздухом при атмосферном давлении.
При подаче в колокол вакуума, воздух удаляется.
Можно наблюдать, что воздушный шар увеличивается в объеме.

Почему это происходит?
I. Потому что воздух (и все газы) обладает свойством расширения.
II. Потому что воздух из колокола был удален, это уменьшило силу давления на воздушный шар и сопротивление расширению воздухом шара снизилось.
Эта свойство расширения можно продемонстрировать, используя только атмосферный воздух и воздушный шар. Закрывая воздушный шар на уровне моря (нулевая высота), в нем установиться давление 1 бар. При перемещении воздушного шара вверх на гору, увеличивая высоту, таким образом, и уменьшая окружающее атмосферное давление, будет происходить расширение воздушного шара. Это явление происходит несмотря на то, что воздушный шар остается закрытым.

Читайте также:  При каком давлении природный газ будет сжиженным

Как это объяснить?
Как было отмечено выше, атмосферное давление уменьшается по мере увеличения высоты над уровнем моря. Увеличение воздушного шара происходит из-за расширения воздуха внутри него (атмосферное давление), чему противодействует внешний воздух, давление которого ниже. При открытии крана, некоторое количество воздушных молекул будет перемещаться из воздушного шара в открытое пространство до тех пор, пока внутреннее давление не будет сбалансировано внешним давлением. Воздушный шар будет выглядеть не полностью раздутым (в вялом состоянии). Если кран закрыть и воздушный шар возвратить на уровень моря, то баллон будет находиться в «более вялом» состоянии, чем тогда, когда он был на горе. Это происходит потому, что внешнее давление (на уровне моря) больше, чем внутреннее давление (поскольку кран был закрыт на высоте выше уровня моря, то установилось более низкое давление) и оно будет действовать до разрушения оболочки воздушного шара. 

Можно сделать следующие заключения:
a) Давление воздуха, содержащегося в резервуаре, может быть уменьшено до нулевого значения только в случае, если воздух из сосуда откачать, используя вакуумный насос.
b) Давление воздуха в сосуде, соединенным с атмосферой, будет равным давлению воздуха вне резервуара.
c) Резервуар, содержащий воздух с повышенным давлением, стравит в атмосферу только часть такого давления.

 а) Внешнее давление – это давление атмосферы в 1 бар (рис.2). Воздух в резервуаре незначительного объема, относительно объема окружающего пространства, имеет более высокое давление. Когда резервуар соединен с атмосферой, то часть сжатого воздуха будет стравлена из резервуара. При этом достигается баланс между внутренним давлением резервуара и атмосферой.

b) На рис.3, резервуар с внутренним давлением 5 бар соединен через закрытый клапан с резервуаром равного объема с давлением в 1 бар (атмосферное давление). Когда клапан откроется, молекулы воздуха будут двигаться из резервуара с более высоким давлением в сосуд с атмосферным давлением.
Это уравнивает два давления в сосудах до среднего значения:

(5 бар + 1 бар) : 2 объема = 3 бар.
В этом случае, поскольку не было никаких «потерь» — утечек в атмосферу, число молекул, «потерянных» первым резервуаром, было меньшим, потому что некоторые из них переместились во второй сосуд.

Рисунок 4 в общем изображении.

Если прибор измерения давления (манометр) соединить с сосудом, где давление 5 бар, то он зафиксирует на различных высотах следующие значения давления: 
Атмосферное давление Давление внутри сосуда Показания манометра
На уровне моря Р=1,0 бар 5 бар 5-1,0=4,0 бар
На 1000 м Р=0,9 бар 5 бар 5-0,9=4,1 бар
На 5000 м Р=0,5 бар 5 бар 5-0,5=4,5 бар

Заключение:
Давление воздуха, существующее внутри любого закрытого сосуда, называется «абсолютным давлением». Давление воздуха расположенного вне сосуда называют «относительным давлением» (или «давлением прибора измерения давления», то есть показанное манометром). Поэтому относительное давление равно разнице между «абсолютным давлением» и «атмосферным давлением» вне сосуда. 

Принцип действия манометра.
Манометр использует упругое отклонение металлической трубки с профилем эллипса для изменения положения стрелки на шкале. Рисунок 4 показывает манометр «в покое», то есть когда разница давлений на внутренние и внешние поверхности трубки нулевое. Конец трубки «B» открыт для источника давления, тогда как конец «А» закрыт и присоединен к механизму рычага. Этот механизм преобразует отклонение «А» во вращательное движение, изменяя положение стрелки на шкале. На рисунке 5, манометр соединен с воздухом под давлением. Конец «А» будет прогибаться из-за различия давлений, внутреннего и внешнего, это различие можно увидеть на шкале манометра.

Источник

Абсолютное и избыточное давление — Мегаобучалка

Давление, отсчитываемое от абсолютного нуля, называется абсолютным давлением и обозначается pабс. Абсолютный нуль давления означает полное отсутствие сжимающих напряжений.

В открытых сосудах или водоемах давление на поверхности равно атмосферному pатм. Разность между абсолютным давлением pабс и атмосферным pатм называется избыточным давлением

pизб = pабс – pатм.

Когда давление в какой-либо точке, расположенной в объеме жидкости, больше атмосферного, т. е. , то избыточное давление положительно и его называют манометрическим.

Если давление в какой-либо точке оказывается ниже атмосферного, т. е. , то избыточное давление отрицательно. В этом случае его называют разрежениемили вакуумметрическим давлением. За величину разрежения или вакуума принимается недостаток до атмосферного давления:

pвак = pатм – pабс;

pизб = – pвак.

Максимальный вакуум возможен, если абсолютное давление станет равным давлению насыщенного пара, т. е. pабс = pн.п. Тогда

pвак max = pатм – pн.п.

В случае если давлением насыщенного пара можно пренебречь, имеем

pвак max = pатм.

Единицей измерения давления в СИ является паскаль (1 Па = 1 Н/м2), в технической системе – техническая атмосфера (1 ат = 1 кГ/см2 = 98,1 кПа). При решении технических задач атмосферное давление принимается равным 1 ат = 98,1 кПа.

Манометрическое (избыточное) и вакуумметрическое (разрежение) давление часто измеряются с помощью стеклянных, открытых сверху трубок – пьезометров, присоединяемых к месту измерения давления (рис. 2.5).

Рис. 2.5

Пьезометры измеряют давление в единицах высоты подъема жидкости в трубке. Пусть трубка пьезометра присоединена к резервуару на глубине h1. Высота подъема жидкости в трубке пьезометра определяется давлением жидкости в точке присоединения. Давление в резервуаре на глубине h1 определится из основного закона гидростатики в форме (2.5)

Читайте также:  Какое давление нужно для мытья машины

,

где – абсолютное давление в точке присоединения пьезометра;

– абсолютное давление на свободной поверхности жидкости.

Давление в трубке пьезометра (открытой сверху) на глубине h равно

.

Из условия равенства давлений в точке присоединения со стороны резервуара и в пьезометрической трубке получаем

  . (2.6)

Если абсолютное давление на свободной поверхности жидкости больше атмосферного (p0 > pатм) (рис. 2.5.а), то избыточное давление будет манометрическим, и высота подъема жидкости в трубке пьезометра h > h1. В этом случае высоту подъема жидкости в трубке пьезометра называют манометрической или пьезометрической высотой.

Манометрическое давление в этом случае определится как

.

Если абсолютное давление на свободной поверхности в резервуаре будет меньше атмосферного (рис. 2.5.б), то в соответствии с формулой (2.6) высота подъема жидкости в трубке пьезометра h будет меньше глубины h1. Величину, на которую опустится уровень жидкости в пьезометре относительно свободной поверхности жидкости в резервуаре, называют вакуумметрической высотой hвак (рис. 2.5.б).

Рассмотрим еще один интересный опыт. К жидкости, находящейся в закрытом резервуаре, на одинаковой глубине присоединены две вертикальные стеклянные трубки: открытая сверху (пьезометр) и запаянная сверху (рис. 2.6). Будем считать, что в запаянной трубке создано полное разряжение, т. е. давление на поверхности жидкости в запаянной трубке равно нулю. (Строго говоря, давление над свободной поверхностью жидкости в запаянной трубке равно давлению насыщенных паров, но ввиду его малости при обычных температурах, этим давлением можно пренебречь).

Рис. 2.6

В соответствии с формулой (2.6) жидкость в запаянной трубке поднимется на высоту, соответствующую абсолютному давлению на глубине h 1:

.

А жидкость в пьезометре, как показано ранее, поднимется на высоту, соответствующую избыточному давлению на глубине h 1.

Вернемся к основному уравнению гидростатики (2.4). Величина H, равная

  , (2.7)

где z – расстояние по вертикали от рассматриваемой точки до некоторой плоскости сравнения, называется гидростатическим напором в некоторой точке объема жидкости относительно плоскости сравнения.

Если в выражении (2.7) давление равно избыточному (p = pизб), то величина

  (2.8)

называется пьезометрическим напором.

Как следует из формул (2.7), (2.8), напор измеряется в метрах.

Согласно основному уравнению гидростатики (2.4) как гидростатический, так и пьезометрический напоры в покоящейся жидкости относительно произвольно выбранной плоскости сравнения являются постоянными величинами. Для всех точек объема покоящейся жидкости гидростатический напор одинаков. То же самое можно сказать и про пьезометрический напор.

Это значит, что если к резервуару с покоящейся жидкостью подключить на разной высоте пьезометры, то уровни жидкости во всех пьезометрах установятся на одинаковой высоте в одной горизонтальной плоскости, называемой пьезометрической.

Поверхности уровня

Во многих практических задачах бывает важно определить вид и уравнение поверхности уровня.

Поверхностью уровня или поверхностью равного давления называется такая поверхность в жидкости, давление во всех точках которой одно и то же, т. е. на такой поверхности dp = 0.

Так как давление является некоторой функцией координат, т. е. p = f(x,y,z), то уравнение поверхности равного давления будет:

  p = f(x, y, z) = C = const. (2.9)

Придавая константе C разные значения, будем получать различные поверхности уровня. Уравнение (2.9) есть уравнение семейства поверхностей уровня.

Свободная поверхность – это поверхность раздела капельной жидкости с газом, в частности, с воздухом. Обычно про свободную поверхность говорят только для несжимаемых (капельных) жидкостей. Понятно, что свободная поверхность является и поверхностью равного давления, величина которого равна давлению в газе (на поверхности раздела).

По аналогии с поверхностью уровня вводят понятие поверхности равного потенциала илиэквипотенциальной поверхности – это поверхность, во всех точках которой силовая функция имеет одно и то же значение. Т. е. на такой поверхности

U = const

или

.

Тогда уравнение семейства эквипотенциальных поверхностей будет иметь вид

U(x,y,z) = C,

где постоянная C принимает различные значения для разных поверхностей.

Из интегральной формы уравнений Эйлера (уравнения (2.3)) следует, что

Из этого соотношения можно сделать вывод, что поверхности равного давления и поверхности равного потенциала совпадают, потому что при dp = dU = 0.

Важнейшее свойство поверхностей равного давления и равного потенциала состоит в следующем: объемная сила, действующая на частицу жидкости, находящуюся в любой точке, направлена по нормали к поверхности уровня, проходящей через эту точку.

Докажем это свойство.

Пусть частица жидкости из точки с координатами переместилась по эквипотенциальной поверхности в точку с координатами . Работа объемных сил на этом перемещении будет равна

.

Но, поскольку частица жидкости перемещалась по эквипотенциаль-ной поверхности, dU = 0. Значит работа объемных сил, действующих на частицу, равна нулю. Силы не равны нулю, перемещение не равно нулю, тогда работа может быть равна нулю только при условии, что силы перпендикулярны перемещению. То есть объемные силы нормальны к поверхности уровня.

Обратим внимание на то, что в основном уравнении гидростатики, записанном для случая, когда на жидкость действует только один вид объемных сил – силы тяжести (см. уравнение (2.5))

,

величина p0 – не обязательно давление на поверхности жидкости. Это может быть давление в любой точке, в которой оно нам известно. Тогда h – это разность глубин (по направлению вертикально вниз) между точкой, в которой давление известно, и точкой, в которой мы хотим его определить. Таким образом, с помощью этого уравнения можно определить значение давления p в любой точке через известное давление в известной точке – p0.

Читайте также:  Какое давление воздуха при покраске

Заметим, что величина не зависит от p0. Тогда из уравнения (2.5) следует вывод: насколько изменится давление p0, настолько же изменится и давление в любой точке объема жидкости p. Поскольку точки, в которых фиксируем p и p0, выбраны произвольно, это означает, что давление, создаваемое в любой точке покоящейся жидкости, передается ко всем точкам занимаемого объема жидкости без изменения величины.

Как известно, в этом и состоит закон Паскаля.

По уравнению (2.5) можно определить форму поверхностей уровня покоящейся жидкости. Для этого надо положить p = const. Из уравнения следует, что это выполнимо лишь при h = const. Значит, что при действии на жидкость из объемных сил только сил тяжести, поверхности уровня представляют собой горизонтальные плоскости.

Такой же горизонтальной плоскостью будет и свободная поверхность покоящейся жидкости.

Источник

Абсолютное давление — формула и примеры расчетов :: SYL.ru

Любое вещество может быть описано своими физико-химическим параметрами. В отличие от жидких и твердых веществ, чье состояние может быть охарактеризовано температурой и плотностью, газы имеют еще один показатель, который называется «давление». Эта физическая величина для газообразного вещества может быть представлена итоговым значением сил ударов молекул о стенки сосуда, содержащего газ. Чем больше молекул ударяется о стенки, чем больше их масса, скорость и сила воздействия на стенки сосуда– тем выше показатель давления.

Классификация

Физики различают атмосферное, абсолютное и избыточное давление. Эти виды величин связаны между собой посредством физических формул.

Единицы измерения давления

Существует множество традиционных единиц давления, которые сложились в результате развития физических дисциплин. Наиболее распространенными их них являются «бар», «атмосфера», «мм ртутного столба» и другие производные от них величины. В физических процессах этот параметр обозначается литерой Р, измеряется в паскалях и производных от него единицах. В письменном виде паскаль отображается так: [Па].

Понятие атмосферного давления

Окружающий нас воздух состоит из постоянно движущихся молекул, которые сталкиваются с земной поверхностью,находящимися на ней предметами и между собой. Из ударов крохотных частиц складывается итоговое давление. Данный параметр называется атмосферными, или барометрическим давлением.

абсолютное давление воздуха

Но, как показали измерения, Ратм в значительной степени зависит от температуры окружающей среды и высоты над уровнем моря. Поэтому для объяснения физических процессов и решения задач текущие параметры атмосферного давления сводят к нормальным условиям. Начальные параметры Ратм определяются при показателе температуры 0⁰ С над нулевым уровнем моря.

Что такое абсолютное давление

Стандартные способы измерения давления обычно используют атмосферное давление в качестве точки отсчета. Обычно этот параметр измеряется различными приборами. Наиболее популярными из которых являются барометры.

абсолютное давление

В других случаях применяют отношение наблюдаемого давления к вакууму или к другой выбранной отметке. Чтобы обозначить выбранные категории, применяют такие определения:

  • Абсолютное давление газа: является параметром точки перехода между вакуумом и наблюдаемым давлением.
  • Избыточное давление: для него точкой отсчета становится давление атмосферное. Вычисляется этот показатель как разность между абсолютным и атмосферным давлением.

    абсолютное и избыточное давление

  • Дифференциальное давление – является разностью показателей между двумя произвольными точками измерений.

Дифференциальное, абсолютное и избыточное давление визуально может быть представлено так:

Избыточное и абсолютное давление логически связаны между собой. Значение абсолютного давления можно получить, измерив наблюдаемое давление и прибавив к нему величину атмосферного Р.

В случае избыточного давления точкой отсчета служит значение атмосферного P. Таким образом, эта величина может быть представлена как разность между абсолютным давлением и атмосферным. Абсолютное и избыточное давление не может быть отрицательным. При Рабс=0 давление становится равным атмосферному показателю этой величины. Если быть точным, то Рабс не может быть равно вакууму – всегда остается какая-то величина, сформированная, например, давлением насыщенных паров в жидкости. Но в случае тяжелых жидкостей этот параметр очень незначителен, поэтому в первоначальных расчетах, не требующих точного вычисления, вполне допустимо.

Что такое абсолютное давление воздуха

Абсолютное давление воздуха можно измерить лишь в сосудах с другими веществами – с жидкостями или газами. Так, данный параметр довольно часто измеряется в закрытых сосудах с жидкостями. Как и в первом случае, абсолютное давление воздуха в закрытом сосуде можно измерить,как разницу между наблюдаемым Р и атмосферным.

Пьезометрическая высота

Как это часто бывает, наряду с общепринятыми единицами измерения физических величин, используются и исторические. Пьезометрическая высота -это одна из таких величин. Она может быть измерена специальным прибором, представляющим собой стеклянную трубку, верхняя часть которой незапечатана и открыто сообщается с атмосферой, а нижняя присоединена к сосуду, в котором измеряется давление. Прибор, при помощи которого можно провести подобные измерения, представлен ниже:

абсолютное давление газа

Если к давлению, наблюдаемому в сосуде, применить законы гидростатики, можно получить такое выражение для абсолютного давления:

Здесь ра – атмосферное давление, а выражение gρhp представляет собой произведение высоты столба жидкости на ее плотность и на значение силы тяжести. Так можно измерить абсолютное значение газа в любом сосуде.

Источник