Какое давление на высоте один километр

Содержание статьи

Атмосферное давление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 июля 2019; проверки требуют 36 правок.

Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней[1]. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени[2]. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.

Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па)[2].

История[править | править код]

Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).

В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.

Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.

Изменчивость и влияние на погоду[править | править код]

На земной поверхности атмосферное давление изменяется время от времени и от места к месту. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[6] (в центральной части смерча давление падает и может достигать значения 560 мм ртутного столба)[7].

На картах атмосферное давление изображается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря[8].

Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.

1 Па = 0,0075 мм рт. ст., или 1 мм рт. ст. = 133,3 Па

Стандартное давление[править | править код]

В химии стандартным атмосферным давлением с 1983 года по рекомендации IUPAC считается давление, равное 100 кПа[9]. Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышестоящего столба воздуха с единичным сечением.

В системе СГС 760 мм рт. ст. эквивалентно 1,01325 бар (1013,25 мбар) или 101 325 Па в Международной системе единиц (СИ).

Барическая ступень[править | править код]

Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень равна:

При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.

С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.

Изменения давления с высотой[править | править код]

Изменение давления с высотой.

С высотой атмосферное давление уменьшается. Например, горная болезнь начинается на высоте около 2-3 км, а атмосферное давление на вершине Эвереста составляет примерно 1/4 от показателя на уровне моря.

В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой[10].

Уравнение статики выражает закон изменения давления с высотой:

где: — давление, — ускорение свободного падения, — плотность воздуха, — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты () изменение давления отрицательное, то есть давление уменьшается. Так как плотность газа зависит от его давления, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха , в котором плотность воздуха почти не изменяется. На практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.

Читайте также:  Какое давление выдержит эпоксидный клей

Приведение к уровню моря[править | править код]

Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, R). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.

При приведении давления к уровню моря используют сокращенную формулу Лапласа:

То есть, зная давление и температуру на уровне , можно найти давление на уровне моря .

Вычисление давления на высоте по давлению на уровне моря и температуре воздуха :

где — давление Па на уровне моря [Па];

— молярная масса сухого воздуха, M = 0,029 кг/моль;

— ускорение свободного падения, g = 9,81 м/с²;

— универсальная газовая постоянная, R = 8,31 Дж/моль·К;

— абсолютная температура воздуха, К, , где — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C);

— высота, м.

На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается[5].

Более простые расчёты (без учёта температуры) дают:

где — высота в километрах.

Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.

Речь идёт об изменении на 0,1 от значения на предыдущей высоте. Это значит, что при подъёме на один километр давление уменьшается до 0,9 (точнее 0,87[прим 1]) от давления на уровне моря.

В ещё более грубом приближении, двукратному изменению давления соответствует изменение высоты на каждые пять километров.

В прогнозах погоды и сводках, распространяемых для населения через интернет и по радио, используется неприведённое давление, то есть, фактическое давление на уровне местности.

См. также[править | править код]

Видеоурок: атмосферное давление

  • Фактическая погода
  • Атмосфера
  • Разгерметизация

Примечания[править | править код]

Источники[править | править код]

Сноски[править | править код]

  1. ↑ Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.

Литература[править | править код]

  • Хргиан А. Х. Физика атмосферы. — 2 изд. — М., 1958.
  • Бургесс Э. К границам пространства, пер. с англ.. — М.: Изд. иностранной литературы, 1957. — 223 с.

Ссылки[править | править код]

  • Медиафайлы по теме Атмосферное давление на Викискладе
  • Атмосферное давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890-1907.
  • График изменения атмосферного давления при изменении высоты

Источник

Как с высотой изменяется атмосферное давление. Формула, график

Не все знают, что на разной высоте давление атмосферы отличается. Существует даже специальный прибор для измерения и давления, и высоты. Называется он барометр-альтиметр. В статье мы подробно изучим, как с высотой изменяется атмосферное давление и при чем тут плотность воздуха. Рассмотрим эту зависимость на примере графика.

Давление атмосферы на разных высотах

Зависимость давления от высоты

Атмосферное давление зависит от высоты. При ее увеличении на 12 м давление уменьшается на 1 мм ртутного столба. Этот факт можно записать с помощью такого математического выражения: ∆h/∆P=12 м/мм рт. ст. ∆h — это изменение высоты, ∆P — изменение атмосферного давления при изменении высоты на ∆h. Что из этого следует?

Из формулы видно, как с высотой изменяется атмосферное давление. Значит, если мы поднимемся на 12 м, то АД уменьшится на 12 мм ртутного столба, если на 24 м — то на 2 мм ртутного столба. Таким образом, измеряя атмосферное давление, можно судить о высоте.

Миллиметры ртутного столба и гектопаскали

В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. 1 мм рт. ст. =133,3 Па =1,333 гПа.

Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. ∆h/∆P=12 м/1,333 гПа. После вычисления получим: ∆h/∆P=9 м/гПа. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа. Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД.

Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? Нет. На такой высоте есть воздух, там летают самолеты. Так в чем же дело?

Связь плотности воздуха и высоты. Особенности

Зависимость высоты и плотности воздуха

Как с высотой изменяется атмосферное давление вблизи поверхности Земли? На этот вопрос уже ответила картинка выше. Чем больше высота, тем меньше плотность воздуха. Покуда мы находимся недалеко от поверхности земли, изменение плотности воздуха незаметно. Поэтому на каждую единицу высоты давление уменьшается примерно на одно и тоже значение. Два записанные нами ранее выражения нужно воспринимать как правильные, только если мы находимся недалеко от поверхности Земли, не выше 1-1,5 км.

График, показывающий как атмосферное давление изменяется с высотой

Теперь перейдем к наглядности. Построим график зависимости давления атмосферы от высоты. При нулевой высоте P0=760мм рт. ст. Из-за того, что с ростом высоты давление уменьшается, атмосферный воздух будет менее сжат, его плотность станет меньше. Поэтому на графике зависимость давления от высоты не будет описываться прямой линией. Что это значит?

Как с высотой изменяется атмосферное давление? Над поверхностью земли? На высоте 5,5 км оно уменьшается в 2 раза (Р0/2). Оказывается, что если мы поднимемся еще на такую же высоту, то есть на 11 км, давление уменьшится еще вдвое и будет равно Р0/4 и т. д.

График зависимости давления от высоты

Соединим точки, и мы увидим, что график — это не прямая, а кривая. Почему, когда мы записывали соотношение зависимости, складывалось впечатление, что на высоте 9 км атмосфера заканчивается? Мы считали, что график является прямой на любых высотах. Это было бы так, если бы атмосфера была жидкой, то есть если бы ее плотность была постоянной.

Читайте также:  Какое давление считается нормальным при глаукоме

Важно понимать, что этот график является лишь фрагментом зависимости на малых высотах. Ни на какой точке этой линии давление не снижается до нуля. Даже в глубоком космосе существуют молекулы газов, которые, правда, не имеют отношение к земной атмосфере. Ни в одной точке Вселенной не существует абсолютного вакуума, пустоты.

Источник

Какое давление на высоте один километр

Влияние высоты на организм человека

Из курса физики хорошо известно, что с повышением высоты над уровнем моря атмосферное давление падает. Если до высоты 500 метров никаких значительных изменений этого показателя не наблюдается, то при достижении 5000 метров атмосферное давление уменьшается почти вдвое. С уменьшением атмосферного давления падает и парциальное давление кислорода в воздушной смеси, что моментально сказывается на работоспособности человеческого организма. Механизм этого воздействия объясняется тем, что насыщение крови кислородом и его доставка к тканям и органам осуществляется за счёт разности парциального давления в крови и альвеолах лёгких, а на высоте эта разница уменьшается.

Барометрическое давление в мм760720480432385335288240
Высота, соответствующая давлению в мм500350045005400650077008900
Давление кислорода в мм1601521009080706050
Насыщенность крови кислородом в %10096949392908882

До высоты в 3500 — 4000 метров организм сам компенсирует нехватку кислорода, поступающего в лёгкие, за счёт учащения дыхания и увеличения объёма вдыхаемого воздуха (глубина дыхания). Дальнейший набор высоты, для полной компенсации негативного воздействия, требует использования лекарственных средств и кислородного оборудования (кислородный баллон).

Кислород необходим всем органам и тканям человеческого тела при обмене веществ. Его расход прямо пропорционален активности организма. Нехватка кислорода в организме может привести к развитию горной болезни, которая в предельном случае — отёке мозга или лёгких — может привести к смерти. Горная болезнь проявляется в таких симптомах, как: головная боль, отдышка, учащённое дыхание, у некоторых болезненные ощущения в мышцах и суставах, снижается аппетит, беспокойный сон и т. д.

Переносимость высоты очень индивидуальный показатель, определяемый особенностями обменных процессов организма и тренированностью.

Большую роль в борьбе с негативным влиянием высоты играет акклиматизация, в процессе которой организм учится бороться с недостатком кислорода.

  • Первой реакцией организма на понижение давления является учащение пульса, повышение кровяного давления и гипервентиляция лёгких, наступает расширение капилляров в тканях. В кровообращение включается резервная кровь из селезёнки и печени (7 — 14 дней).
  • Вторая фаза акклиматизации заключается в повышение количества производимых костным мозгом эритроцитов практически вдвое (от 4,5 до 8,0 млн. эритроцитов в мм3 крови), что приводит к лучшей переносимости высоты.

Благотворное влияние на высоте оказывает употребление витаминов, особенно витамина С.

Интенсивность развития горной болезни в зависимости от высоты.[1]

Высота, мПризнаки
800-1000Высота переносится легко, однако у некоторых людей наблюдаются небольшие отклонения от нормы.
1000-2500Физически нетренированные люди испытывают некоторую вялость, возникает легкое головокружение, учащается сердцебиение. Симптомов горной болезни нет.
2500-3000Большинство здоровых неакклиматизированных людей ощущает действие высоты, однако ярко выраженных симптомов горной болезни у большинства здоровых людей нет, а у некоторых наблюдаются изменения в поведении: приподнятое настроение, излишняя жестикуляция и говорливость, беспричинное веселье и смех.
3000-5000Проявляется острая и тяжело протекающая (в отдельных случаях) горная болезнь. Резко нарушается ритм дыхания, жалобы на удушье. Нередко возникает тошнота и рвота, начинаются боли в области живота. Возбужденное состояние сменяется упадком настроения, развивается апатия, безразличие к окружающей среде, меланхоличность. Ярко выраженные признаки заболевания обычно проявляются не сразу, а в течение некоторого времени пребывания на этих высотах.
5000-7000Ощущается общая слабость, тяжесть во всем теле, сильная усталость. Боль в висках. При резких движениях — головокружение. Губы синеют, повышается температура, часто из носа и легких выделяется кровь, а иногда начинается и желудочное кровотечение. Возникают галлюцинации.

2. Рототаев П. С. Р79 Покоренные гиганты. Изд. 2-е, перераб. и доп. М., «Мысль», 1975. 283 с. с карт.; 16 л. ил.

Источник

Зависимость давления воздуха от высоты

Многие люди, особенно альпинисты, пастухи на горных пастбищах, знают, что с увеличением высоты уменьшается давление воздуха. Становится трудно дышать, невозможно сварить горячую пищу, чай. Естественно, появляется вопрос: почему давление воздуха уменьшается с высотой? Рассмотрим решение этого вопроса.

Что такое воздух? Воздух — это бесцветная смесь различных газов, составляющих атмосферу нашей планеты. Основными газами, из которых состоит воздух, являются азот (78 %), кислород (21 %), аргон (0,9 %), углекислый газ (0,03 %) и другие. С точки зрения физики поведение воздуха при существующих условиях на Земле подчиняется законам идеального газа. Согласно этой модели молекулы и атомы газа не взаимодействуют друг с другом, расстояния между ними огромные по сравнению с их размерами, а скорости движения при комнатной температуре по расчетам по молекулярно-кинетической теории газов составляют порядка 460 м/с.

Что такое «давление» с физической точки зрения.

Под давлением воздуха понимают силу, с которой воздушный столб давит на поверхность. В физике она измеряется в паскалях (Па). 1 Па означает, что сила в 1 ньютон (Н) перпендикулярно приложена к поверхности площадью 1 м2. Поэтому давление 1 Па — это очень маленькое давление. На уровне моря давление воздуха составляет примерно 0,1 МПа (точнее -101 325 Па), что соответствует давлению 1 атмосфера. Это значит, что на площадку 1 см2 воздух давит с силой 1 кгс, а на площадку 1 м2 — 100 х 100 =10’000 кгс = 10 тонно-силы (или 100 кН)! Это очень много, но человек ее не ощущает, так как внутри него каждая клетка создает аналогичное противодавление. Последний факт говорит о том, что давление атмосферы с разных сторон на человека взаимно компенсируется.

Кстати, если внезапно возле человека убрать давление воздуха, то он взорвется! По настоящему. По этой причине водолазы с большой глубины должны подниматься достаточно медленно, чтобы жидки составляющие организма (например, кровь) не вскипели.

Зависимость давления от высоты

Атмосферу около нашей планеты существует за счет земной гравитации. Эти же силы являются виновниками падения давления воздуха с увеличением высоты. Но не только земное притяжение приводит к уменьшению давления. Снижение температуры тоже вносит свой вклад. Основная причина, по которой изменяется давление с высотой, заключается в том, что на каждый последующий слой воздуха давит меньшее количество воздуха. На поверхности Земли давлению в 1 атм. Соответствует тот факт, что весь столб воздуха площадью в 1 см2 от поверхности Земли и до далекого космоса весит 1 кг. Для расчета изменения давления воздуха с высотой можно использовать гидростатическую формулу зависимости давления от глубины (высоты). Изменение этого давления можно определить по формуле

Читайте также:  Какое давление воды должно быть в многоквартирном доме

где: dP — величина изменения давления при изменении высоты на dh,

ρ — плотность воздуха,

g — ускорение свободного падения.

Из уравнения состояния идеального газа можно получить, что

где m — масса 1 молекулы,

T — его температура,

k — постоянная Больцмана.

Объединяя две приведенные выше формулы и решая полученное уравнение относительно давления и высоты, можно получить следующую формулу:

где Ph и P₀ — давление на высоте h и на высоте уровня моря, соответственно,

P₀ = 101 325 Па,

g = 9,8 м/с² ,

k = 1,38*10^-23 Дж/К,

m = 4,817*10^-26 кг (с учетом молярной массы воздуха 29 г/моль),

^ — знак возведения в степень.

Подставляя известные значения в (3):

m * g / k =4,817*10^-26 кг*9,8 м/с² / 1,38*10^-23 Дж/К = 34,2 *10^-3 = 0,0342,

ее можно переписать в окончательном виде:

Ph = P₀ *e-m*g*h/(k*T) → 101 325 * e^-0,0342*h/T (4)

Полученное выражение может использоваться для расчетов зависимости атмосферного давления от высоты и температуры (постоянной на любой высоте) называется барометрической формулой. Для примера рассчитаем давление воздуха на вершине горы Джомолунгма (или — Эверест) в Китае на Гималайских горах на высоте 8848 м.

Для решения задачи воспользуемся формулой (4) зависимости давления от высоты. Для расчетов примем следующие значения неизвестных параметров:

T = 293 K (20 ℃),

h = 8848 м,

Подставляя эти числа в (4), получаем:

Ph = 101 325 *e^-0,0342*8848/293 = 101 325 *e^-1,0327 = 36076 Па, (5)

Это значение почти в три раза меньше, чем на уровне поверхности моря.

Если хотите узнать, что обозначает слово или словосочетание, в ОПЕРЕ выделите это слово(сочетание), нажмите правую клавишу мыши и выберите «Искать в . «, далее — «Yandex». Если это текстовая ссылка — выделите ее, нажмите правую клавишу мыши, выберите «перейти …». Все! О-ля-ля!

Если вам понравилась статья, то поставьте «лайк» и подпишитесь на канал! Если не понравилась — все равно комментируйте и подписывайтесь. Этим вы поможете каналу. И делитесь ссылками в ваших соцсетях!

Источник

Как с высотой изменяется атмосферное давление. Формула, график

Не все знают, что на разной высоте давление атмосферы отличается. Существует даже специальный прибор для измерения и давления, и высоты. Называется он барометр-альтиметр. В статье мы подробно изучим, как с высотой изменяется атмосферное давление и при чем тут плотность воздуха. Рассмотрим эту зависимость на примере графика.

Давление атмосферы на разных высотах

Атмосферное давление зависит от высоты. При ее увеличении на 12 м давление уменьшается на 1 мм ртутного столба. Этот факт можно записать с помощью такого математического выражения: ∆h/∆P=12 м/мм рт. ст. ∆h — это изменение высоты, ∆P — изменение атмосферного давления при изменении высоты на ∆h. Что из этого следует?

Из формулы видно, как с высотой изменяется атмосферное давление. Значит, если мы поднимемся на 12 м, то АД уменьшится на 12 мм ртутного столба, если на 24 м — то на 2 мм ртутного столба. Таким образом, измеряя атмосферное давление, можно судить о высоте.

Миллиметры ртутного столба и гектопаскали

В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. 1 мм рт. ст. =133,3 Па =1,333 гПа.

Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. ∆h/∆P=12 м/1,333 гПа. После вычисления получим: ∆h/∆P=9 м/гПа. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа. Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД.

Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? Нет. На такой высоте есть воздух, там летают самолеты. Так в чем же дело?

Связь плотности воздуха и высоты. Особенности

Как с высотой изменяется атмосферное давление вблизи поверхности Земли? На этот вопрос уже ответила картинка выше. Чем больше высота, тем меньше плотность воздуха. Покуда мы находимся недалеко от поверхности земли, изменение плотности воздуха незаметно. Поэтому на каждую единицу высоты давление уменьшается примерно на одно и тоже значение. Два записанные нами ранее выражения нужно воспринимать как правильные, только если мы находимся недалеко от поверхности Земли, не выше 1-1,5 км.

График, показывающий как атмосферное давление изменяется с высотой

Теперь перейдем к наглядности. Построим график зависимости давления атмосферы от высоты. При нулевой высоте P=760мм рт. ст. Из-за того, что с ростом высоты давление уменьшается, атмосферный воздух будет менее сжат, его плотность станет меньше. Поэтому на графике зависимость давления от высоты не будет описываться прямой линией. Что это значит?

Как с высотой изменяется атмосферное давление? Над поверхностью земли? На высоте 5,5 км оно уменьшается в 2 раза (Р/2). Оказывается, что если мы поднимемся еще на такую же высоту, то есть на 11 км, давление уменьшится еще вдвое и будет равно Р/4 и т. д.

Соединим точки, и мы увидим, что график — это не прямая, а кривая. Почему, когда мы записывали соотношение зависимости, складывалось впечатление, что на высоте 9 км атмосфера заканчивается? Мы считали, что график является прямой на любых высотах. Это было бы так, если бы атмосфера была жидкой, то есть если бы ее плотность была постоянной.

Важно понимать, что этот график является лишь фрагментом зависимости на малых высотах. Ни на какой точке этой линии давление не снижается до нуля. Даже в глубоком космосе существуют молекулы газов, которые, правда, не имеют отношение к земной атмосфере. Ни в одной точке Вселенной не существует абсолютного вакуума, пустоты.

Источник

Источник