Какое давление на орбите
Содержание статьи
Какое давление в открытом космосе в атмосферах
Какая температура в космосе?
Всем нам с самого детства известно, что в африканских странах обычно царит жаркая погода, а в Антарктиде — всегда холодно. Но задумывались ли вы когда-нибудь о том, насколько тепло или холодно в открытом космосе? Температура является результатом движения молекул, из которых состоят все материальные объекты — чем быстрее движутся эти крошечные частицы, тем объект горячее. Так как в космосе нет никаких частиц и он считается вакуумным пространством, понятие «температура» к нему совершенно не применимо. Однако, чтобы ответ на интересующий многих людей все-таки существовал, ученые уверяют, что температура космоса — это «абсолютный ноль». Но значит ли это, что космические корабли не нагреваются в космосе до высоких температур и там всегда относительно хорошая погода? Что-то не верится, поэтому давайте разбираться.
В открытом космосе не помогут ни шорты, ни шуба — нуден специальный костюм
Вакуум — это пространство, в котором нет никаких веществ, даже воздуха. С переводе с латинского, слово «vacuus» переводится как как «пустой».
Погода в космосе
Если говорить коротко, то «абсолютный ноль» — это самая низкая температура, которая возможна во Вселенной, холоднее уже некуда. В Цельсиях этот показатель равен -273,15 градусам. При такой температуре атомы, которые являются мельчайшими частицами всех химических элементов, полностью перестают двигаться. В открытом космосе молекулы есть, но их очень мало, так что они практически не взаимодействуют друг с другом. Движения нет, а это явный признак «абсолютного нуля», подробнее о котором написано в этом материале.
Интересный факт: самая холодная температура воздуха на нашей планете была зафиксирована в 1983 году, на территории Антарктиды. Тогда столбики термометров опустились до -89,15 градусов Цельсия
Экстремальные условия космоса
Итак, по словам ученых, в открытом космосе температура равна -273,15 градусам Цельсия. Но это совершенно не значит, что все попадающие в космос объекты мгновенно обретают ту же температуру. Как и на поверхности нашей планеты, космические корабли, спутники и другие объекты могут нагреваться и охлаждаться, причем до экстремальных уровней. Но передача тепла в космосе возможна только одним способом.
Вообще, существует три способа передачи тепла:
- проводимость, которую можно наблюдать при нагревании металлического стержня — если нагреть один конец, со временем горячей станет и противоположная часть;
- конвекция, которую можно наблюдать, когда теплый воздух перемещается из одной комнаты в другую;
- излучение, когда испускаемые космическими объектами элементарные частицы вроде фотонов (частиц света), электронов и протонов объединяются, образуя движущиеся частицы.
Как вы уже догадались, в космосе объекты нагреваются под воздействием активности элементарных частиц — ведь мы уже выяснили, что температура является результатом движений молекул? Фотоны и другие элементарные частицы могут излучаться Солнцем и другими космическими объектами.
Насколько сильно и быстро будут нагреваться или охлаждаться попавшие в космос объекты, напрямую зависит от их местоположения относительно звезд и планет, размеров, формы и так далее. Например, летящий в космосе космический корабль будет буквально раскален со стороны Солнца, а его теневая сторона будет очень холодной. Чем дальше корабль находится от небесного светила — тем сильнее будет разница в степени нагрева.
При строительстве космических кораблей важно учитывать экстремальные изменения температур
Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 260 градусов Цельсия. Теневая сторона, в свою очередь, охлаждена до 100 градусов Цельсия. Экипажу космической станции иногда приходится выходить на поверхность конструкции и подвергаться резким сменам температур. Поэтому их костюмы оснащены системой нагрева и охлаждения, благодаря которой исследователи космоса чувствуют себя относительно комфортно.
О том, какие бывают скафандры, недавно писал мой коллега Артем Сутягин. Оказывается, они бывают не только космическими.
Чем дальше от Солнца расположены космические объекты, тем они холоднее. Например, температура на Плутоне, которая расположена очень далеко, равняется -240 градусам Цельсия. А самое холодное место во Вселенной расположено в туманности Бумеранг — температурный режим в этом регионе равен -272 градусам Цельсия.
Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете материалы, которые не были опубликованы на сайте!
В общем если вы когда-нибудь фантастическим образом окажетесь в открытом космосе, вам понадобится костюм, внутри которого температура будет регулироваться автоматически. Но резкие изменения температуры — не единственная проблема, которая будет вас поджидать. В космическом пространстве человеческое тело терпит много изменений, о которых можно почитать в этом материале.
Источник
На границе Солнечной системы начало повышаться давление
Принято считать, что в космосе нет ничего, кроме вакуума, холода и бесконечной пустоты далеких-далеких галактик. Однако это не совсем так. Конечно, в космосе не кипит жизнь, но там происходит не мало интересных процессов. Та же космическая радиация вызывает массу интересных процессов. А к примеру, знали ли вы то, что в космосе есть и давление? Причем ученые даже могут его измерить, чем и занимаются уже достаточно давно. Только вот какое-то время назад давление на границе нашей Солнечной системы начало расти. Но как такое возможно?
«Космическое давление» начало расти. Но почему?
Откуда в космосе берется давление?
Это довольно хороший вопрос, ведь если мы вспомним курс физики, то на нашей планете атмосферное давление создается молекулами воздуха и другими частицами, притягиваемыми гравитацией. Не последнюю роль в формировании давления играет наличие атмосферы и то, на какой высоте от поверхности мы его измеряем. Чем выше — тем оно меньше. В космосе, как вы понимаете, почти ничего из этого нет. Поэтому давление там формируется несколько иначе. А вы были в курсе того, что в космосе существует давление? Напишите об этом в нашем чате в Телеграм.
В общем, «космическое давление» создается ионами, электронами и другими элементарными частицами. Эти частицы, нагретые и ускоренные Солнцем создают гелиосферу. Гелиосфера — это, если выражаться простыми словами, гигантский шар, в котором «подвешенные» частицы стремятся от центра к периферии. Край этой области, где влияние Солнца преодолевается давлением частиц других звезд и межзвездного пространства, является местом, где заканчивается магнитное влияние Солнца. Там и создается разница давлений. И его можно измерить. Используя данные, полученные с космических аппаратов NASA «Вояджер 1» и «Вояджер 2», ученые рассчитали общее давление частиц во внешней области Солнечной системы.
Проанализировав данные, известные из предыдущих исследований, мы обнаружили, что новое значение давления на границе Солнечной системы гораздо больше, чем то, что было раньше, — заявил Джейми Рэнкин, ведущий автор нового исследования, астрофизик Принстонского университета в Нью-Джерси. Это говорит о том, что есть некоторые изменения в нашей Солнечной системе, о которых мы не знаем. И это требует дальнейшего изучения. Для фиксирования этого события было действительно уникальное время, потому что мы увидели его сразу после того, как «Вояджер 1» пересек край Солнечной системы.
Схематичное изображение того, как «Вояджеры» производили замеры
Известно, что гелиосфера находится на расстоянии почти в 9 миллиардов миль (а это порядка 14,5 миллиардов километров) от центра Солнечной системы. Поэтому исследование этой области довольно сильно затруднено. Изучение давления и скорости звука в этой области на границе Солнечной системы, со слов ученых, может помочь нам понять, как Солнце влияет на межзвездное пространство. Это не только информирует нас о нашей собственной Солнечной системе, но и о динамике и развитии других звезд и планетных систем.
Источник
Развенчиваем самые распространенные мифы о космосе
Современное кино и фантастические книги о космосе часто сбивают нас с толку, представляя многие факты искаженными. Конечно, верить всему, что видишь на экране или читаешь в Интернете, нельзя, однако некоторые заблуждения настолько крепко засели в нашем сознании, что нам сложно уже поверить, что на самом деле все несколько иначе.
Например, как вы думаете, что будет, если человек окажется в открытом космосе без скафандра? Его кровь закипит и испарится, его разовьет на мелкие кусочки или, может быть, он превратиться в кусок льда?
Многие полагают, что Солнце – это пылающий огнем шар, Меркурий – самая горячая планета Солнечной системы, а космические зонды отправляли только на Марс. Как же дела обстоят на самом деле?
Человек в космосе без скафандра
Миф №1: Человек без скафандра взорвется в открытом космосе
Вероятно, это один из самых старых и распространенных мифов. Есть мнение, что если человек вдруг окажется в открытом космическом пространстве без специального защитного костюма, его просто разорвет на части.
Логика в этом есть, ведь в космосе нет давления, поэтому если человек взлетит слишком высоко, его раздует как воздушный шар и он лопнет. Однако на самом деле наше тело вовсе не так эластично, как воздушный шарик. Нас не может разорвать на части в космосе, так как наше тело слишком упруго. Нас может немного раздуть, это так, но наши кости, кожа и другие органы не настолько хрупки, чтобы в миг разорваться на части.
В реальности несколько людей подвергались влиянию невероятно низкого давления во время своей работы в космосе. В 1966 году один космонавт тестировал космический скафандр, когда произошла разгерметизация на высоте более 36 километров. Он потерял сознание, но вовсе не взорвался, а позже полностью восстановился.
Миф №2: Человек без скафандра замерзнет в открытом космосе
Это заблуждение подогревается множеством кинофильмов. Во многих из них можно увидеть сцену, в которой один из героев оказывается за пределами космического корабля без скафандра. Он тут же начинает мерзнуть, а если пробудет в открытом космосе определенное время, просто превратиться в ледышку. В реальности все будет происходить с точностью наоборот. В открытом космосе вы вовсе не переохладитесь, а перегреетесь.
Миф №3: Кровь человека закипит в открытом космосе
Этот миф связан с тем фактом, что точка кипения любой жидкости имеет прямую связь с давлением окружающей среды. Чем выше давление, тем выше точка кипения и наоборот. Это происходит потому, что жидкости легче превратиться в газ, когда давление ниже. Поэтому логично было бы предположить, что в космосе, где нет давления, жидкости сразу же закипят и испарятся, в том числе и кровь человека.
Линия Амстронга – величина, при которой атмосферное давление настолько низкое, что жидкости испаряются при температуре, равной температуре нашего тела. Однако с кровью такого не происходит.
Например, жидкости тела, та же слюна или слезы, действительно испаряются. Человек, который испытал на себе, что такое низкое давление на высоте 36 километров, рассказывал, что во рту у него действительно пересохло, так как вся слюна испарилась. Кровь, в отличие от слюны, находится в закрытой системе, а вены позволяют ей оставаться в жидком состоянии даже при очень низком давлении.
Миф №4: Солнце – пылающий шар
Солнце – космический объект, которому уделяют много внимания при изучении астрономии. Это огромный огненный шар, вокруг которого вращаются планеты. Он находится на идеальном для жизни расстоянии от нашей планеты, давая достаточно тепла.
Многие неверно представляют себе Солнце, полагая, что оно действительно горит ярким пламенем, наподобие костра. В реальности же это большой газовый шар, который дает свет и тепло благодаря ядерному синтезу, который имеет место, когда два атома водорода соединяются, образуя гелий.
Черные дыры в космосе
Миф №5: Черные дыры имеют форму воронки
Многие представляют себе черные дыры как гигантские воронки. Именно так часто изображают эти объекты в кино. В реальности черные дыры фактически «невидимы», однако чтобы вы имели о них представление, художники часто изображают их в виде водоворотов, которые поглощают все вокруг.
В центре водоворота находится нечто, похожее на вход в потусторонний мир. Реальная черная дыра напоминает шар. В ней нет как таковой «дыры», которая затягивает. Это всего лишь объект с очень большой гравитацией, который притягивает к себе все, что находится поблизости.
Хвост кометы
Миф №6: У кометы горящий хвост
Представьте себе на секунду комету. Скорее всего, ваше воображение нарисует кусок льда, летящий на большой скорости сквозь космическое пространство и оставляющей за собой яркий след.
В отличие от метеоров, которые вспыхивают в атмосфере и умирают, комета может похвастаться наличием хвоста вовсе не из-за трения. Более того, она вовсе не разрушается, путешествуя в космосе. Ее хвост образуется благодаря теплу и солнечному ветру, которые растапливают лед, а частицы пыли отлетают от тела кометы в направлении, обратном ее движению.
Температура на Меркурии
Миф №7: Меркурий ближе всего к Солнцу, а значит, это самая горячая планета
После того, как Плутон вычеркнули из списка планет Солнечной системы, самой маленькой из них стал считаться Меркурий. Эта планета находится ближе всего к Солнцу, поэтому можно предположить, что она является самой горячей. Тем не менее, это не так. Более того, Меркурий на самом деле сравнительно холодный.
Максимальная температура на Меркурии составляет 427 градусов Цельсия. Если бы эта температура наблюдалась на всей поверхности планеты, даже тогда Меркурий был бы холоднее Венеры, температура поверхности которой составляет 460 градусов Цельсия.
Несмотря на то, что Венера находится на расстоянии 49889664 километра от Солнца, она имеет такую высокую температуру благодаря атмосфере, состоящей из углекислого газа, который задерживает тепло у поверхности. У Меркурия такой атмосферы нет.
Помимо отсутствия атмосферы, есть еще одна причина, почему Меркурий — сравнительно холодная планета. Все дело в ее движении и орбите. Полный оборот вокруг Солнца Меркурий совершает за 88 земных суток, а полный оборот вокруг своей оси делает за 58 земных суток. Это означает, что ночь на Меркурии длится 58 земных суток, поэтому температура на той стороне, которая оказывается в тени, опускается до минус 173 градусов Цельсия.
Запуски космических аппаратов
Миф №8: Человек отправлял космические корабли только к поверхности Марса
Все, конечно, слышали о марсоходе «Кьюриосити» и его важной научной работе, которую он выполняет, находясь сегодня на поверхности Марса. Вероятно, многие забыли о том, что на Красную планету отправлялись и другие аппараты.
Марсоход «Оппортьюнити» приземлился на Марсе в 2003 году. Ожидалось, что он проработает не более 90 дней, однако этот аппарат до сих пор в рабочем состоянии, хотя прошло уже 10 лет!
Многие полагают, что мы никогда не сможем запустить космические аппараты для работы на поверхности других планет. Конечно, человек отправлял различные спутники на орбиты планет, но добраться до поверхности и благополучно приземлиться — задача не из легких.
Впрочем, попытки были. Между 1970 и 1984 годами СССР удачно запустил 8 аппаратов на Венеру. Атмосфера этой планеты крайне не гостеприимна, поэтому все корабли проработали там очень недолго. Самое долгое пребывание — всего 2 часа, это даже больше, чем рассчитывали ученые.
Также человек добрался и до более удаленных планет, например, до Юпитера. Эта планета практически полностью состоит из газа, поэтому приземляться на нее в обычном смысле несколько затруднительно. Ученые все же отправили к ней аппарат.
В 1989 году космический корабль «Галилео» полетел к Юпитеру, чтобы изучить эту гигантскую планету и ее спутники. Это путешествие заняло 14 лет. 6 лет Аппарат усердно выполнял свою миссию, а затем был сброшен на Юпитер.
Он успел отправить важную информацию о композиции планеты, а также ряд других данных, которые позволили ученым пересмотреть свои представления о формировании планет. Также еще один корабль под названием «Юнона» сейчас на пути к гиганту. Планируется, что он доберется до планеты только через 3 года.
Невесомость в космосе
Миф №9: Космонавты на орбите Земли находятся в невесомости
Реальная невесомость или микро-гравитация существует далеко в космосе, однако ни одному человеку пока не удавалось ее испытать на собственной шкуре, так как ни один из нас пока слишком далеко от планеты не улетал.
Многие уверены, что космонавты, работая в космосе, парят в невесомости потому, что находятся далеко от планеты и не испытывают притяжения Земли. Однако это не так. Притяжение Земли на таком сравнительно небольшом расстоянии все равно существует.
Когда объект вращается вокруг такого большого космического тела, как Земля, обладающего большой гравитацией, этот объект на самом деле падает. Так как Земля постоянно движется, космические корабли не падают на ее поверхность, а тоже движутся. Это постоянное падение создает иллюзию невесомости.
Космонавты таким же образом падают внутри своих кораблей, но так как корабль движется с той же скоростью, кажется, что они парят в невесомости.
Подобный феномен можно заметить в падающем лифте или резко снижающемся самолете. Кстати, сцены с невесомостью в картине «Аполлон 13» снимались в снижающемся лайнере, который используется для тренировки космонавтов.
Самолет поднимается на высоту 9 тысяч метров, а затем начинает резко падать в течение 23 секунд, тем самым создавая внутри салона невесомость. Именно такое состояние испытывают космонавты в космосе.
Какова высота атмосферы земли?
Источник
Источник
«Если в космосе вакуум, то от чего отталкиваются космические корабли? И почему космонавты спокойно выходят в открытый космос?» – Яндекс.Кью
Анонимный вопрос
18 августа 2018 · 303,5 K
Главный редактор издания «Популярный университет», химик по образованию, продвигаю массы… · popuni.ru
Для начала определимся, что такое на самом деле вакуум. В физике под вакуумом понимается пространство, концентрация в котором молекул газа значительно ниже, чем в атмосфере планеты. Количественно охарактеризовать его можно с помощью отношения свободного пробега частиц в среде к размеру пространства, в котором присутствует этот вакуум.
В зависимости от этого показателя, а также от давления, различают низкий, средний и высокий вакуум. В последнем типа давлений самое низкое и такой вакуум ближе всего к космическим условиям. Однако, не стоит забывать, что понятие вакуума не учитывает концентрацию элементарных частиц, таких как фотоны. Но они имеют достаточно серьезный импульс и могут оказывать на объекты значительное влияние за счет давления света. Таким образом мы пришли к первой возможности движения в космосе — солнечному парусу. Этот тип двигателей можно использовать только в непосредственной близости к звездам, так как он основан на «толкании» объекта фотонами излучения, исходящего от звезды. Медленно, но верно такой двигатель позволяет достичь внушительной скорости, так как объект будет двигаться с постоянным ускорением.
Второй — и самый распространенный на сегодня — тип двигателей для движения в космосе — реактивные. Грубо говоря, они основаны на третьем законе Ньютона: силы, с которыми тела действуют друг на друга, равны. В таком типе двигателей из сопла выбрасывается очень горячий газ с высоким ускорением. Если перемножить эти два параметра для газа, то мы получим силу, с которой он действует на тело. А если затем разделим эту силу на массу тела, то получим ускорение, которое объект получит, когда «извергнет» рассчитанное ранее количество газа. Таким образом, если кратко, то в космосе корабли «отталкиваются» от газа, который сами же извергают: газ в этом случае движется в противоположную от ракеты сторону.
Правильно! Возьмите с собой в космос мешок с бомбочками и по одной кидайте и взрывайте в ту сторону от которой… Читать дальше
Так вышло, что разбираюсь во многих областях.
Веду канал «Ходячая энциклопедия»…
Именно потому, что в космосе вакуум, корабли и могут летать. Основную часть времени они летят по инерции. Разгон же происходит за счёт закона сохранения импульса: если газ из двигателя вылетает в одну сторону, сам двигатель — вместе с кораблём — полетит в противоположную. В открытый космос же космонавты выходят не голыми, а в скафандрах.
Но вообще… Читать далее
Математик я и программер. Интересно все!
про реактивную струю все написали.
а про вакуум — у вас внутри скафандра 1 атмосфера, снаружи — 0, разность всего 1 атмосфера, как при погружении на 10 метров в воду. У велосипеда в шине 2-3 атмосферы, у спортивного в «трубках» — 9-10 и ничего, не разрываются же давлением.
Значит другая среда? Тогда понятно почему у Леонова в коцмосе ботинки были на шнурках.
Свободные операционные системы, техника, экономические формации, психология, мед…
Из-за пурги про Космос в фильмах многие люди справедливо задаются вопросами о реальных свойствах Космоса.
В вакууме Космоса импульс кораблям для поворота и движения придают направленные газовые сопла. Притом для придания движения достаточно лишь кратковременного включения. В вакууме сопротивления движению нет и корабль на таком кратковременном… Читать далее
«Эфир тончайший есть основа,
Великой Пустоты, среда.
И только холод излучает,
В соприкосновении она.
Лишь только… Читать дальше
Пенсионер. Нахожусь на отдыхе. Увлечений нет. Интересует чтение учебника по…
Электроны в металлах и магнитах двигаясь упорядочно создают магнитный поток различной плотности. Вакуум заполнен этой материей имеющую различную плотность. Эта материя находиться и в пространстве атома, между электронами и ядром атома, Фотоны имеют форму бублика стенки которого вращаются. При движении фотона в вакууме из за движения стенок материя… Читать далее
Так почему магнитятся лишь некоторые Ме и их сплавы? Ведь все Ме проводники.
Реактивный двигатель в вакууме не работает, замедление при посадке на Луну невозможно. Но есть и хорошая новость, инопланетяне к нам не прилетят.
Как только космики анашой запыхтят , тут сразу нлошники на хвост упадут.
Атмосфера является составной и неотделимой частью материального тела планеты Земля.
Так же к стати как и все земные тела. Живые земные тела имеют Души. Которые являются составными частями Всемирной Души материального тела планеты Земля. Это существо и есть Бог живущий в небесах.
Так что не надо далеко летать чтобы встретить… Читать далее
Фермер на пенсии, но коров ещё дою понемногу. Профиль с бородой и усами на…
Космическиекорабли отталкиваютсяот маленьких таких частиц разбросанных по кбеЗкрайнему космическому пространству в огромных количествах — но правда редко, но хватает для отталкивания , иной раз струя реактивная нет- нет да оттолкнётся от такой вот частицы, собственно почему мы не можем развить скорость света например…. , да потому , что частиц… Читать далее
История Наука Религия Общество
Космические корабли отталкиваются от вещества (струи газов) которую выпускают через сопло . Эффект аналогичен отдаче пожарного брансбойда , когда из него выпускают воду под давлением , или отдаче стреляющего автомата
Космические корабли отталкиваются от реактивной струи.
Космонавты выходят в космос не спокойно, а с некоторым волнением. Даже несмотря на то, что одевают при этом герметичные скафандры и берут запас воздуха для дыхания.
В космосе нет ВАКУУМА, — в космосе ОБЛАСТЬ ПОНИЖЕНОГО ДАВЛЕНИЯ.
Корабли и космонавты на орбите находятся в… Читать дальше
Источник