Какое давление на экваторе и почему

Какое давление на экваторе и почему

География

Почему вдоль экватора атмосферное давление пониженное, а над полюсами — повышенное?

Близ экватора воздух сильно нагревается, расширяется и поднимается вверх. Поэтому образуется низкое давление. Вокруг полюсов из-за низких температур воздух тяжелый. Он опускается вниз, и давление становится высоким

Ещё по теме

Природные зоны земли. В чём сходство и различие между влажным экваториальным лесом и смешанным лесом?

Чем живые организмы отличаются от неживых?

Дополните предложения названиями свойств воздуха.

Что такое Вселенная?

Зачем нам география и как мы будем ее изучать. Учебник ориентирует вас в географии. Хотели бы вы выбрать другое название? Какое? Есть ли у вас свой символ — ориентир в жизни?

Знаете ли вы, что такое компас? Приходилось ли вам им пользоваться?

Каким образом все части гидросферы связаны между собой?

Что составляет мир живой природы Земли?

Какую оболочку Земли называют атмосферой?

Назовите, какая из географических наук изучает: процессы, происходящие в Мировом океане; население Земли; процессы, происходящие в грунтах, на которых возводятся сооружения; климаты земного шара; состав и строение земной коры; рельеф земной поверхности; влияние особенностей территории на состояние здоровья населения.

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

О сайте

На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.

Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.

calcsbox.com

На сайте используется технология LaTeX.

Поэтому для корректного отображения формул и выражений

пожалуйста дождитесь полной загрузки страницы.

© 2020 Все калькуляторы online

Копирование материалов запрещено

Источник

Пояса низкого и высокого давления.

Климатические пояса и атмосферное давление

Атмосферное давление зависит от климатических поясов освещённости и увлажнения, от нагрева Земли лучами Солнца.

Причина возникновения поясов атмосферного давления — разница температур самих воздушных масс, вследствие нагрева от земной поверхности. Из-за шарообразной формы Земли, разные участки прогреваются Солнцем неравномерно. Это влияет на образование различных зон атмосферного воздействия.

Причем здесь температура воздуха и пояса низкого и высокого давления? Чем отличается холодный воздух от тёплого? Какие существуют пояса атмосферного давления?

Плотность холодных масс воздуха больше тёплых. А чем больше плотность, тем воздух тяжелее. В полярных районах холодно, даже летом. Холодный воздух плотный и тяжелый. Поэтому, там высокое атмосферное давление. Другими словами, арктический и антарктический полярные зоны — это пояса высокого давления Земли. В экваториальных районах всегда жарко. Тёплый воздух — лёгкий. Поэтому на экваторе — пояс низкого давления Земли.

Пояса давления на земном

В районах тропиков тоже жарко, но при этом формируется тропический пояс высокого атмосферного давления. В чём причина возникновения такого несоответствия при жарких и сухих тропиках?

Всё просто. На экваторе теплый воздух поднимается до верхних пределов тропосферы, и имеет определённую плотность, которая постепенно изменяется по мере охлаждения воздуха. Растекаясь от экватора к тропическим зонам, те же воздушные массы, но уже с другой плотностью и холодные, опускаются к поверхности Земли из тропосферы, (см. «Пояса увлажнённости Земли»).

Между двумя поясами высокого давления (между тропическими и полярными) лежит зона с низким давлением. То есть, выполняется чередование:

  • Экватор — низкое атмосферное д.;
  • Тропики — высокое атмосферное д.;
  • Умеренные зоны — н.д.;
  • Полярные — в.д.
  1. Сухой климат — Арктический и Антарктический, Тропические — пояса высокого атмосферного давления.
  2. Влажный климат — Умеренные и Экваториальный — пояса низкого атмосферного давления.

Зависимость между поясами давления и осадками.

В климатических поясах с низким атмосферным давлением преобладают осадки в большом количестве. И, наоборот — в климатических зонах с высоким давлением воздушных масс осадки наблюдаться в меньшей мере. Почему так? Потому, что происходит процесс конденсации водяных паров в капли жидкости при подъёме тёплых воздушных масс в тропосферу. Это физическое явление характерно для климатических поясов с низким атмосферным давлением — экваториальных и умеренных зон.

Читайте также:  На какой глубине газ низкого давления

Зависимость между поясами атмосферного давления и осадками

Источник

Атмосферное давление.

Атмосферное давление обуславливается весом воздуха. 1 м³ воздуха весит 1,033 кг. На каждый метр поверхности земли приходится давление воздуха силой 10033 кг. Под этим подразумевается столб воздуха высотой от уровня моря до верхних слоев атмосферы. Если сравнить его со столбом воды, то диаметр последнего имел бы высоту всего 10 метров. То есть, атмосферное давление создается собственной массой воздуха. Величина атмосферного давления на единицу площади соответствует массе воздушного столба, находящегося над нею. В результате увеличения воздуха в этом столбе происходит рост давления, а при уменьшении воздуха — падение. Нормальным атмосферным давлением считается давление воздуха при t 0°С на уровне моря на широте 45°. В этом случае атмосфера давит с силой 1,033 кг на каждый 1 см² площади земли. Масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм. На этой взаимосвязи и измеряется атмосферное давление. Оно измеряется в миллиметрах ртутного столба или миллибарах(мб), а так же в гектопаскалях. 1мб = 0,75 мм рт.ст., 1 гПа = 1 мм.

Измерение атмосферного давления.

Атмосферное давление измеряется с помощью барометров. Они бывают двух типов.

1. Ртутный барометр представляет собой стеклянную трубку, которая запаяна сверху, а открытым концом погружена в металлическую чашу с ртутью. Рядом с трубкой крепится шкала, показывающая изменение давления. На ртуть действует давление воздуха, которое своим весом уравновешивает столбик ртути в стеклянной трубке. Высота ртутного столба меняется при изменении давления.

2. Металлический барометр или анероид представляет собой гофрированную металлическую коробку, которая герметично закрыта. Внутри этой коробки находится разреженный воздух. Изменение давления заставляет колебаться стенки коробки, вдавливаясь или выпячиваясь. Эти колебания системой рычагов заставляют стрелку перемещаться по шкале с делениями.

Самопишущие барометры или барографы предназначены для записи изменений атмосферного давления. Перо улавливает колебание стенок анероидной коробки и чертит линию на ленте барабана, который вращается вокруг своей оси.

Каким бывает атмосферное давление.

Атмосферное давление на земном шаре изменяется в широких пределах. Его минимальная величина — 641,3 мм рт.ст или 854 мб была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная — 815,85 мм рт.ст. или 1087 мб в Туруханске зимой.

Давление воздуха на земную поверхность изменяется с высотой. Среднее значение атмосферного давления над уровнем моря — 1013 мб или 760 мм рт.ст. Чем больше высота, тем меньше атмосферное давление, так как воздух становится все более разреженным. В нижнем слое тропосферы до высоты 10 м оно снижается на 1 мм рт.ст. на каждые 10 м или на 1 мб на каждые 8 метров. На высоте 5 км оно меньше в 2 раза, 15 км — в 8 раз, 20 км — в 18 раз.

В связи с перемещением воздуха, изменением температуры, сменой времени года атмосферное давление постоянно меняется. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня. В течение года из-за холодного и уплотненного воздуха зимой атмосферное давление имеет максимальную величину, а летом — минимальную.

Атмосферное давление постоянно меняется и распределяется по поверхности земли зонально. Это происходит из-за неравномерного прогревания Солнцем земной поверхности. На изменение давления влияет перемещение воздуха. Там, где воздуха становится больше, давление высокое, а там, откуда воздух уходит — низкое. Воздух, прогревшись от поверхности, поднимается вверх и давление на поверхность понижается. На высоте воздух начинает охлаждаться, уплотняется и опускается на близлежащие холодные участки. Там возрастает атмосферное давление. Следовательно, изменение давления обуславливается перемещением воздуха в результате его нагревания и охлаждения от земной поверхности.

Атмосферное давление в экваториальной зоне постоянно понижено, а в тропических широтах — повышено. Это происходит из-за постоянно высоких температур воздуха на экваторе. Нагретый воздух поднимается и уходит в сторону тропиков. В Арктике и Антарктике поверхность земли всегда холодная, а атмосферное давление повышено. Его обуславливает воздух, который приходит из умеренных широт. В свою очередь в умеренных широтах из-за оттока воздуха формируется зона пониженного давления. Таким образом, на Земле существуют два пояса атмосферного давления — пониженный и повышенный. Пониженный на экваторе и в двух умеренных широтах. Повышенный на двух тропических и двух полярных. Они могут немного смещаться в зависимости от времени года вслед за Солнцем в сторону летнего полушария.

Полярные пояса высокого давления существуют весь год, однако, летом они сокращаются, а зимой, наоборот, расширяются. Круглый год области пониженного давления сохраняются близ Экватора и в южном полушарии в умеренных широтах. В северном полушарии все происходит по-другому. В умеренных широтах северного полушария давление над материками сильно повышается и поле низкого давления как бы «разрывается»: сохраняется оно только над океанами в виде замкнутых областей пониженного атмосферного давления — Исландского и Алеутского минимумов. Над материками, где заметно повысилось давление, образуются зимние максимумы: Азиатский (Сибирский) и Северо-Американский (Канадский). Летом поле пониженного давления в умеренных широтах северного полушария восстанавливается. При этом над Азией формируется обширная область пониженного давления. Это — Азиатский минимум.

Читайте также:  Какое давление в дизельном двигателе мерседес

В поясе повышенного атмосферного давления — тропиках — материки нагреваются сильнее океанов и давление над ними ниже. Из-за этого над океанами выделяют субтропические максимумы:

  • Северо-Атлантический (Азорский);
  • Южно-Атлантический;
  • Южно-Тихоокеанский;
  • Индийский.

Несмотря на крупномасштабные сезонные изменения своих показателей, пояса пониженного и повышенного атмосферного давления Земли — образования довольно устойчивые.

Источник

Источник

Атмосферное давление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 июля 2019; проверки требуют 35 правок.

Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней[1]. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени[2]. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.

Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па)[2].

История[править | править код]

Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).

В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.

Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.

Изменчивость и влияние на погоду[править | править код]

На земной поверхности атмосферное давление изменяется время от времени и от места к месту. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[6] (в центральной части смерча давление падает и может достигать значения 560 мм ртутного столба)[7].

На картах атмосферное давление изображается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря[8].

Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.

1 Па = 0,0075 мм рт. ст., или 1 мм рт. ст. = 133,3 Па

Стандартное давление[править | править код]

В химии стандартным атмосферным давлением с 1983 года по рекомендации IUPAC считается давление, равное 100 кПа[9]. Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышестоящего столба воздуха с единичным сечением.

В системе СГС 760 мм рт. ст. эквивалентно 1,01325 бар (1013,25 мбар) или 101 325 Па в Международной системе единиц (СИ).

Барическая ступень[править | править код]

Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень равна:

Читайте также:  Какое атмосферное давление в москве сегодня и завтра

При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.

С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.

Изменения давления с высотой[править | править код]

Изменение давления с высотой.

С высотой атмосферное давление уменьшается. Например, горная болезнь начинается на высоте около 2-3 км, а атмосферное давление на вершине Эвереста составляет примерно 1/4 от показателя на уровне моря.

В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой[10].

Уравнение статики выражает закон изменения давления с высотой:

где: — давление, — ускорение свободного падения, — плотность воздуха, — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты () изменение давления отрицательное, то есть давление уменьшается. Так как плотность газа зависит от его давления, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха , в котором плотность воздуха почти не изменяется. На практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.

Приведение к уровню моря[править | править код]

Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, R). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.

При приведении давления к уровню моря используют сокращенную формулу Лапласа:

То есть, зная давление и температуру на уровне , можно найти давление на уровне моря .

Вычисление давления на высоте по давлению на уровне моря и температуре воздуха :

где — давление Па на уровне моря [Па];

— молярная масса сухого воздуха, M = 0,029 кг/моль;

— ускорение свободного падения, g = 9,81 м/с²;

— универсальная газовая постоянная, R = 8,31 Дж/моль·К;

— абсолютная температура воздуха, К, , где — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C);

— высота, м.

На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается[5].

Более простые расчёты (без учёта температуры) дают:

где — высота в километрах.

Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.

Речь идёт об изменении на 0,1 от значения на предыдущей высоте. Это значит, что при подъёме на один километр давление уменьшается до 0,9 (точнее 0,87[прим 1]) от давления на уровне моря.

В прогнозах погоды и сводках, распространяемых для населения через интернет и по радио, используется неприведённое давление, то есть, фактическое давление на уровне местности.

См. также[править | править код]

Видеоурок: атмосферное давление

  • Фактическая погода
  • Атмосфера
  • Разгерметизация

Примечания[править | править код]

Источники[править | править код]

Сноски[править | править код]

  1. ↑ Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.

Литература[править | править код]

  • Хргиан А. Х. Физика атмосферы. — 2 изд. — М., 1958.
  • Бургесс Э. К границам пространства, пер. с англ.. — М.: Изд. иностранной литературы, 1957. — 223 с.

Ссылки[править | править код]

  • Медиафайлы по теме Атмосферное давление на Викискладе
  • Атмосферное давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890-1907.
  • График изменения атмосферного давления при изменении высоты

Источник