Какое давление испытывает соленоид по которому течет ток
Содержание статьи
Какое давление испытывает соленоид по которому течет ток
Какое давление испытывает соленоид по которому течет ток
Применим теорему о циркуляции вектора
для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).
Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.
Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор
перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.
Из параллельности вектора
оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.
Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.
Второй и четвёртый интегралы равны нулю, т.к. вектор
перпендикулярен направлению обхода, т.е .
Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда
где
– магнитная индукция на участке 1–2 – внутри соленоида, – магнитная проницаемость вещества.
Если отрезок 1–2 внутри соленоида, контур охватывает ток:
где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).
Тогда магнитная индукция внутри соленоида:
, | (2.7.1) |
и , т.е. .
Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.
Произведение nI – называется число ампер витков на метр.
У конца полубесконечного соленоида, на его оси магнитная индукция равна:
, | (2.7.2) |
Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.
Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:
· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:
, | (2.7.3) |
где L – длина соленоида, R – радиус витков.
· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле
, | (2.7.4) |
На рисунке 2.15 изображены силовые линии магнитного поля
: а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.
Источник
§ 134. Действие магнитного поля на виток или соленоид с током.
В предыдущем параграфе мы рассмотрели действие поля на искусственно выделенный прямолинейный участок проводника с током. Но ток, протекающий по проводнику, представляет собой замкнутую цепь, и действие магнитного поля на ток весьма сложным образом зависит от формы проводников и от их расположения в поле. Мы ограничимся рассмотрением сравнительно простых, но важных случаев, когда проводник представляет собой один виток или совокупность последовательно соединенных витков (соленоид). Для изучения действия магнитного поля на такой виток или соленоид удобно придать приборам форму, изображенную на рис. 239, где провода
и , подводящие ток от батареи, сделаны длинными и тонкими, так что они одновременно служат подвесами, дающими возможность витку легко поворачиваться и перемещаться. Помещая такой виток или соленоид в магнитное поле, например в магнитное поле Земли или между полюсами магнита или электромагнита, мы можем изучать действие поля на виток (соленоид). При этом можно пренебречь действием поля на подводящие провода, если они расположены очень тесно друг к другу или, еще лучше, обвивают друг друга. Действительно, по этим проводам текут токи одинаковой силы и противоположного направления и они находятся в одном и том же поле. Следовательно (§ 133), на подводящие провода действуют равные и противоположно направленные силы, так что подвес остается в покое.
Рис. 239. Виток с током (а) и соленоид (б) для проведения исследований в магнитном поле
Мы неоднократно обращали внимание на то, что виток, по которому течет ток, эквивалентен короткому магниту, направление которого перпендикулярно к плоскости витка, причем северный полюс этого магнита расположен на той стороне плоскости витка, с которой ток кажется циркулирующим против часовой стрелки (правило буравчика, § 124; см. также § 119), а южный на противоположной стороне. Соленоид же эквивалентен магниту, лежащему вдоль оси соленоида. Ось этого магнита совпадает с осью соленоида, а расположение северного и южного полюсов определяется правилом буравчика, так же как и в случае витка. Естественно поэтому, что на такой виток или соленоид поле действует, как на магнитную стрелку, а именно: однородное поле создает вращающий момент, стремящийся повернуть виток или соленоид так, чтобы ось его расположилась вдоль поля и направление от южного полюса витка (соленоида) к северному совпало с направлением поля (рис. 240). В неоднородном поле к этому вращающему моменту присоединяется сила, увлекающая повернувшийся виток (соленоид) в том направлении, в каком увеличивается магнитная индукция поля.
Рис. 240. Положение, которое принимают в магнитном поле виток с током (а) и соленоид (б)
Пользуясь сведениями, полученными нами в § 133 относительно действия магнитного поля на прямолинейный проводник с током, мы можем яснее представить себе происхождение вращающего момента и влекущей силы, которые действуют на виток с током в магнитном поле. Пусть виток имеет прямоугольную форму (рис. 241) и расположен в однородном поле так, что две его стороны параллельны направлению поля, а две перпендикулярны к нему. На первые две поле не действует (рис. 234, в), а на две вторые действует с равными и противоположно направленными силами
и , потому что обе эти стороны имеют одинаковую длину и по ним течет ток одинаковой силы, но противоположного направления (рис. 241). Таким образом, силы, с которыми однородное поле действует на виток с током, составляют пару сил, которая и обусловливает вращающий момент, поворачивающий виток так, что плоскость его устанавливается перпендикулярно к направлению поля.
Рис. 241. Рамка с током в однородном поле устанавливается так, чтобы плоскость ее была перпендикулярна к линиям поля: а) вид сбоку; б) вид сверху
Рис. 242. Рамка с током, стоящая перпендикулярно к линиям однородного поля. Действующие на нее силы стремятся деформировать рамку (сжать или растянуть ее), не вызывая ее поступательного движения как целого: а) вид сбоку (магнитное поле направлено к наблюдателю); б) вид сверху
Если поле однородно, то этим поворотом и ограничивается воздействие поля, ибо в этом положении действие поля сводится к четырем направленным в разные стороны силам
и , которые не могут перемещать виток, а только стремятся его деформировать и уравновешиваются упругими силами, возникающими при деформации жесткого витка (рис. 242). Но если поле неоднородно и, следовательно, магнитная индукция поля в разных местах его имеет различное направление (и модуль), то результат будет несколько сложнее (рис. 243). Силы, действующие на разные стороны повернувшегося витка, теперь не равны и направлены не в прямо противоположные стороны, а составляют некоторый угол между собой (рис. 243, а), ибо эти силы перпендикулярны к направлению магнитной индукции поля. Их равнодействующая направлена в сторону возрастания магнитной индукции (рис. 243, б).
Рис. 243. а) Рамка, находящаяся в неоднородном поле (вид сверху). Действующие на нее силы вызывают движение рамки в область наибольшей магнитной индукции поля. б) Сложение сил и , действующих на боковые стороны рамки. Равнодействующая сила стремится втянуть рамку в область наибольшей магнитной индукции поля
Наше рассмотрение касалось прямоугольного витка. Оно сохраняет свою силу и для витка любой формы, только в этом случае расчет более сложен, и мы его не приводим.
В случае соленоида сказанное применимо к каждому витку. Вращающие моменты, действующие на каждый виток жесткого соленоида, складываясь, дают результирующий вращающий момент, поворачивающий весь соленоид. При неоднородном поле силы, влекущие каждый виток в сторону возрастания магнитной индукции поля, окажут такое же действие и на весь соленоид в целом. Это рассмотрение объясняет нам, каким образом действие поля на каждый элементарный амперов ток приводит к повороту всей магнитной стрелки и к ее увлечению вдоль поля, если оно неоднородно.
134.1. В горизонтальной плоскости лежит виток. Однородное магнитное поле направлено вертикально сверху вниз (рис. 244). Как будут направлены силы, действующие на виток: а) если по нему пропустить ток в направлении, указанном стрелкой; б) если ток идет в обратном направлении? Какую форму стремится принять виток, если он сделан из очень гибкой проволоки, в обоих случаях?
Рис. 244. К упражнению 134.1
134.2. Если через проволочную спираль пропускать ток, то витки ее притягиваются друг к другу и спираль стягивается по оси. Объясните это явление.
134.3. Объясните опыт с «танцующей пружиной», изображенной на рис. 245. Ток подводится к пружине через верхний неподвижный конец 1 и через чашечку с ртутью 2, в которую погружен нижний конец пружины. При включении тока пружина начинает периодически сжиматься и растягиваться, причем конец ее то выходит из ртути, то снова входит в нее. Какой из известных нам приборов напоминает это устройство? Для какой цели его можно было бы использовать?
Рис. 245. К упражнению 134.3
134.4. Кусок железа, помещенный перед катушкой, втягивается в нее при включении тока независимо от направления тока. На этом основано устройство амперметров и вольтметров так называемой электромагнитной системы, применяемых для измерения переменного тока и напряжения (на рис. 246 для ясности кусок железа снабжен стрелкой и показана шкала). Объясните этот опыт. Пришло бы железо в движение, если бы мы поместили его внутрь катушки, т. е. в область, где магнитное поле однородно?
Рис. 246. К упражнению 134.4
134.5. На рис. 247 изображена модель «электропушки», представляющая собой горизонтально укрепленный соленоид 1, намотанный на медную или стеклянную трубку. У одного конца его находится железный «снаряд» (гвоздь) 2. Если на короткое время включить достаточно большой ток, то снаряд втянется внутрь соленоида, пролетит сквозь него и вылетит с довольно значительной скоростью. В какой момент нужно выключить ток, чтобы снаряд вылетел из соленоида с наибольшей скоростью? Каково будет движение снаряда, если ток останется включенным все время?
Рис. 247. К упражнению 134.5
Источник
Источник
Давление на боковую поверхность соленоида
Давление на боковую поверхность соленоида
2018-05-14
Очень длинный прямой соленоид имеет радиус сечения $R$ и $n$ витков на единицу длины. По соленоиду течет постоянный ток $I$. Пусть $x$ — расстояние, отсчитываемое вдоль оси соленоида от его торца. Найти:
а) индукцию магнитного поля на оси как функцию $x$; изобразить примерный график зависимости индукции $B$ от отношения $x/R$;
б) расстояние $x_$ до точки на оси, в которой индукция поля отличается от индукции в глубине соленоида на $eta = 1$%.
Мы делаем то же, что и в задаче 7535. Тогда (а) магнитная индукция по оси на расстоянии $x$ от одного конца очевидно,
$x > 0$, означает что поле находится вне соленоида. $B$ тогда падает с $x. x nI$. График $B — x$.
(б) Имеем, $frac — delta B > > = frac left [ 1 — frac > + x_^ > > right ] = 1- eta$
Так как $eta$ мало ($approx 1$%), то $x_$ должно быть отрицательным. Таким образом, $x_ = — | x_ |$
$|x_ |^ = (1 — 4 eta + 4 eta^ )(R^ + |x_ |^ )$
$0 = (1 — 2 eta)^R^ — 4 eta (1 — eta)|x_ |^$
Источник
Соленоид АКПП — Что это ? Почему АКПП пинается, работает не корректно?
Соленоид АКПП – это электромагнитный клапан-регулятор, закрывающий и открывающий масляный канал. Его работа управляется ЭБУ, который непрерывно посылает электрические импульсы с определённой частотой. Соленоид контролирует давление масла на конкретные связки сцепления, быстро переключая передачи, или снимает блокировку гидротрансформатора. Так же, соленоид АКПП отвечает за управление режимами коробки передач.
По своей конструкции соленоид — это металлический стержень, который обвит спиралью с постоянным током. Внутри он подвижен и под влиянием тока движется от конца спирали к началу, с помощью пружины, перекрывая или открывая поток масла. Эта конструкция удобна для современных АКПП тем, что в случае сбоев с электроснабжением пружина автоматически срабатывает и перекрывает масло.
Где находятся соленоиды?
Соленоид, или же электроклапан, находится в гидроблоке — гидравлической клапанной плите. В гидроблоке он вставлен в канал, где скрепляется с ним с помощью болта или специальной прижимной пластины. С другого конца он присоединяется с помощью шлейфа, или штекера электропроводки к блоку управления автоматики. Соленоид АКПП отвечает за передачу сигналов между гидравлической и электрической системами. Он с помощью своих функций объединяет их. И часто это объединение дает сбои, которые определяет компьютер. В АКПП располагается не менее 4-х соленоидов. Их количество зависит от сложности схемы и количества ступеней. Кабель и шлейф ЭБУ часто являются причинами поломки соленоидов, поэтому подвергаются замене так же быстро, как и соленоид.
Важно! Для долговременной службы соленоидов важно не производство, а качество масла.
Причины поломок и «клина» соленоидов:
— Некачественное масло. Соленоиды забиваются пыльным нагаром, который получается от изношенных расходников и узлов. Симптом — клапан соленоида при холодном масле работает нормально, а при горячем – тормозит. Чтобы устранить эту проблему, рекомендуется полоскать соленоид, промывать в растворителях и очищать с помощью переменного тока и растворителя.
— Протечки — это следствие износа, поломка деталей, таких как плунжер, манифольд. При наличии PWM соленоидов (с клапаном шарикового типа) в управлении, при ослаблении одного из них, компьютер учитывает его износ и перенаправляет часть нагрузки на другие соленоиды. Это немного продлевает жизнь состарившейся детали. Но горячее масло и интенсивность напряжения быстро изнашивают слабый соленоид, и тогда приходится его менять. Интенсивность работы, при перенаправлении давления и части обязанностей на другие соленоиды, изнашивает их каналы и плунжеры.
— Снижение упругости пружины, трещины в корпусе, снижение сопротивления обмотки соленоида, поломки конструкции. Самая распространенная причина выхода из строя соленоидов – износ его деталей: втулок, манифольда, клапана, плунжера или шарика. Плунжер засоряется стружкой от изношенных деталей и масла, все начинается с проблемы с переключением – его клинит, потом увеличивается количество нагара, и выходят из строя втулки и клапаны.
Как проверить и заменить соленоиды?
Если вы заметили, что вам стало тяжелее переключать скорости на определённые передачи, заметили в поддоне неизвестную стружку, ваш компьютер подает вам сигналы бедствия – в поиске причин обратиться непосредственно к соленоидам. Достаточно легко определить, какой же именно соленоид «клинит».
Каждый соленоид отвечает за группу передач и управление гидротрансформатором. Это зависит от марки вашего авто и АКПП. Например, если в коробке 4 соленоида, то первый отвечает за переключение 1-2 передачи, и, скорее всего, за 3-4 передачу, второй – 2-3 передача, третий за блок гидротрансформатора, четвёртый отвечает за работу тормозной ленты. Если проблема с переключением с 2-3 передачи, то, соответственно, этот соленоид подлежит ремонту или замене. Если вы при движении чувствуете толчки и удары в коробку передач, или компьютер вам сам говорит о проблеме (высвечивается код, лампочка мигает и т.д.), эти случаи говорят о том, что нужно срочно проверить гидроблок. В этих случаях необходимо сразу проверить деталь.
В первую очередь, соленоид проверяется на сопротивление. На контакт клапана подают напряжение 12 В. Если соленоид рабочий, то он издаст щелчок, если же такового нет, то проблема в его засорении. Для прочистки под напряжением продуваем сжатым воздухом – соленоид должен его пропускать. Если нет, необходима его замена.
Ремонт соленоида своими руками возможен, но только в тех случаях, когда сама деталь разборная. Современные детали, в своем большинстве, сейчас выпускаются не разборными. Для таких деталей единственным вариантом ремонта является их продувка или ультразвук. Если же деталь разборная, то можно поменять обмотку, промыть все детали в бензине, высушить и собрать. После этих действий рекомендуем проверить соленоид на работоспособность. Если у вас не удался ремонт соленоида, то его замена в АКПП нетрудная, главное – все сделать аккуратно и осмотрительно. Перед тем, как приступить к работе, необходимо определить тип своей АКПП, и, исходя из этих данных, подобрать подходящий соленоид. Открепляем гидроблок от коробки, отсоединяем соленоид от питания и извлекаем из блока. Далее устанавливаем новые детали. Устанавливаем гидроблок на его законное место, не забывая про новую прокладку.
Источник
СОЛЕНОЙД АКПП-УСТРОЙСТВО, НАЗНАЧЕНИЕ
В автоматических коробках передач скорости переключаются методом управления гидравлическими потоками. Под воздействием электрических импульсов, поступающих с электронного блока управления ЭБУ, соленоид АКПП открывает/закрывает масляный канал в гидроблоке, что позволяет контролировать давление на поршни и фрикционы . Данный принцип используется для управления режимами коробки передач. Соленоиды – это электромеханические клапаны, регулирующие потоки рабочих жидкостей.
Какую роль выполняют соленоиды
В гидроблоке АКПП трансмиссионная жидкость под давлением воздействует на сцепление, обеспечивая плавные переключения передач. Управление этим процессом осуществляется с помощью автомобильного бортового компьютера. ЭБУ подает импульсы через электромагнитные клапаны – соленоиды, установленные на гидравлическом модуле в АКПП. Они состоят из электрической спирали, находящейся под постоянным током и металлического внутреннего сердечника.
Каждый соленоид выполняет определенную функцию:
- Включение-выключение каналов,
- Регулировка направлений гидравлических потоков ATF в заданный момент времени.
- Контроль за количеством жидкости, проходящей по каналам в единицу времени.
Соленоиды отвечают за следующие процессы:
- переключение скоростей;
- управление блоком гидротрансформатора (в просторечии – бублика);
- функционирование тормозной системы.
Типы соленоидов для АКПП
Электромагнитные клапаны для АКПП более раннего производства были устроены по типу on-off. Они имели упрощенную конструкцию, использовались с целью открыть-закрыть каналы, пропускающие рабочую жидкость гидравлической системы. Изделия нового поколения – соленоидыVOILVO с сердечниками усложненной конструкции оборудованы встроенным металлическим клапаном шарикового типа. Данное изобретение не обрело популярности, т. к. они сложны в исполнении и часто ломаются.
Основные типы современных соленоидов разделяются на следующие группы:
Трехканальные электромагнитные клапаны
Трехканальные соленоиды АКПП предназначены для регулировки давления в гидросистеме и подачи масла на подвижные агрегаты. Их конструкция характеризуется повышенной долговечностью и надежностью. Модернизированные электромагнитные клапаны изготавливаются в виде многоканальных соленоидов (от трех до пяти каналов) могут управлять несколькими клапанами плиты. Благодаря упрощенной конструкции, надежность соленоидов существенно возросла, срок использования гидроблоков в целом также заметно увеличился.
Интеллектуальные соленоиды
Особой популярностью среди автопроизводителей пользуются интеллектуальные соленоиды, способные управлять всеми функциями гидравлической клапанной системы. Соленоиды-регуляторы работают по принципу вентиля. Они не просто работают на «открыть/закрыть канал», теперь просвет увеличивается или уменьшается на заданную величину, что позволяет дозировать количество поступающей смазки. Степень раствора сечения зависит от величины импульсного тока, поступающего с центрального бортового компьютера на магнитную сердцевину электрического клапана.
Неисправности соленоидов АКПП и их ремонт
В процессе эксплуатации автоматической коробки иногда выдаются сообщения об ошибке по вине отказа соленоидов. Во избежание сбоев в АКПП рекомендуется проводить регулярное обслуживание как отдельных электромеханических клапанов, так и целого блока.
Для предотвращения заклинивания сердечника соленоида достаточно промыть устройство в специальном растворителе. Блоки соленоидов очищаются при помощи ультразвука. При использовании ультразвука нет необходимости демонтировать соленоиды с автоматической трансмиссии . Данная процедура выполняется после пройденного пути, равного 50 000 км.
Замена или ремонт соленоидов АКПП производятся после пробега авто более 300 000 км, а также после интенсивной эксплуатации машины. Если изношены отверстия клапана, появляются заметные протечки смазочной и охлаждающей жидкостей, их необходимо заменить на новые элементы.
Причины отказа соленоидов в АКПП, трудности диагностики
Несмотря на долговечность и надежность, соленоиды АКПП иногда выходят из строя, деформируются, ломаются.
Наиболее частые причины поломок соленоидов:
- Скопление вредных масляных отложений на металлических стержнях.
- Отсутствие реакции на электрические сигналы (шток заедает и не выдвигается).
- Заклинивание сердечника.
Использование дешевого трансмиссионного масла низкого качества либо несоблюдение сроков полной сервисной замены смазочного материала приводит к окончательному разрушению работоспособности соленоидов в автоматических коробках передач. Продукты износа, входящие в состав рабочих жидкостей, постепенно откладываются на поверхности намагниченного стержня.
Такую поломку трудно выявить при диагностике. Во избежание сбоев в управлении коробкой, рекомендуется заливать в картер трансмиссионное масло соответствующего качества, а также не игнорировать рекомендации автопроизводителей о регулярной замене смазочного материала.
Сервисные компании проводят компьютерную диагностику АКПП , в том числе и соленоидов. При необходимости здесь производится замена непригодных электромагнитных клапанов на новые механизмы. Мастера специализированных пунктов могут подробно проинструктировать, как проверить работоспособность соленоидов.
Совет: если заклинивает один из клапанов, рекомендуется заменить весь блок соленоидов одновременно.
Гарантией длительного использования соленоидов в АКПП служит применение масла высокого качества
Типичные признаки неисправности соленоидов
Соленоиды АКПП – это важные механизмы, задействованные в сложной системе автоматической коробки передач. С течением времени они постепенно изнашиваются, отказываются выполнять функции. Причиной возможных поломок могут служить окончательная выработка отведенного срока эксплуатации, а также внешние разрушающие факторы.
О сбоях, возникших по вине изношенных соленоидов, расскажут следующие косвенные признаки:
- участившиеся случаи перехода коробки-автомата в аварийный режим;
- резкие толчки при переключении скоростей;
- удары в районе коробки при плавном возрастании оборотов двигателя.
При обнаружении подобных симптомов следует срочно обратиться в ближайший автосервис. Транспортное средство нуждается в глубокой проверке системы управления, компьютерной диагностике, гидравлического блока соленоидов, с последующим ремонтом автоматической коробки передач и полной заменой трансмиссионного масла.
Описание характерных поломок соленоидов
Чаще всего электромагнитные клапаны страдают от использования некачественного смазочного материала. Элементы соленоида покрываются налетом накоксованного масла. Наступает момент, когда подвижный шток окончательно заклинивает в одном положении.
Если произошло залипание сердечника в одном соленоиде, это означает что все клапаны, входящие в гидравлический блок АКПП тоже скоро заклинят. В этом случае рекомендуется менять все соленоиды АКПП одновременно. При этом необходимо также произвести полную замену смазочной жидкости на высококачественное масло. Марка смазочного материала выбирается в соответствии с рекомендациями автопроизводителя, изложенными в инструкции на данный автомобиль.
Электромагнитные клапаны ломаются также по причине сбоев в работе самого блока управления, который посылает электрические импульсы на соленоиды. Подобная проблема может быть выявлена только при проведении тщательной компьютерной диагностики автомобиля. Вышедший из строя управляющий блок ЭБУ не подлежит ремонту, его просто меняют на новый дорогостоящий экземпляр.
Заявленный срок службы соленоидов АКПП также является ограниченным во времени. Как и любой механизм, клапаны не работают бесконечно долго даже при соблюдении необходимых требований. Средняя продолжительность их эксплуатации приблизительно рассчитана на количество циклов, равное от 300 до 400 тысяч. При этом необходимо учитывать, что на длительность службы соленоидов существенное влияние оказывает не столько общий пробег автомобиля, сколько манера вождения автовладельца.
Если водитель практикует агрессивное вождение, часто нажимает на педаль газа и активно переключает передачи, магнитные клапаны АКПП потребуется менять намного раньше заявленного эксплуатационного срока.
Самостоятельная проверка и замена соленоидов АКПП
Соленоиды постоянно находятся в агрессивной среде – трансмиссионном масле с металлическими мелкими продуктами износа шестерен (стружка, осколки, сажа от тормозных фрикционов и пр.).Принцип действия клапана АКПП состоит в том, что его сердечник постоянно находится в магнитном поле. Этим магнитом притягиваются металлические фрагменты, находящиеся в масляном растворе, на стержень и обмотку катушки.
Если при эксплуатации автомобиля замечены такие признаки, как удары и толчки в районе коробки передач, загорелась лампочка датчика о неисправности АКПП, переключение передач сопровождается резкими ударами и рывками, рекомендуется проверить состояние соленоидов:
- Первичная компьютерная диагностика гидроблока.
- Если компьютер выдал заключение о поломке соленоидов, данные механизмы демонтируются с машины для дальнейшего анализа.
- При помощи тестера замеряется сопротивление соленоида. Данный показатель должен быть равен 10-25 Ом.
- Проверяется возможное заклинивание сердечника. Контакты клапана подсоединяются к источнику тока с напряжением 12 вольт. Если соленоид исправен, он должен при подключении издавать явный щелчок.
Существует метод проверки соленоидов при помощи сжатого воздуха. Считается, что при продувке клапана, находящегося в закрытом положении, он свободно пропускает воздушный поток. Соответственно, в открытом – воздух не проходит.
Замена соленоидов в АКПП может быть произведена в условиях гаража. Основное условие – тщательное выполнение рекомендаций. Тип соленоида определяется, исходя из особенностей конструкции автоматической коробки передач. Необходимые технические данные на АКПП можно посмотреть в инструкции по эксплуатации конкретного автомобиля.
Алгоритм действий при замене соленоидов АКПП:
- демонтаж гидроблока с коробки передач (открутить болты, отжать специальные фиксаторы);
- отключение от питания и извлечение соленоидов из блока;
- установка новых соленоидов на освободившиеся места;
- подключение элементов к сети;
- установка гидроблока на место с заменой изношенной прокладки на новую.
Прокладка гидроблока нуждается в обязательной замене с целью предупреждения возможных утечек масляной жидкости.
Источник
Источник