Какое давление держит титан
Содержание статьи
Титан
Продажа проката титана
и титановых сплавов
Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность (s в/r × g), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик.
Основные сведения о титане
Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия титана
Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана
В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Характеристики физико-механических свойств титана (ВТ1-00)
Плотность r , кг/м3 | 4,5 × 10-3 |
---|---|
Температура плавления Тпл, ° С | 1668± 4 |
Коэффициент линейного расширения a × 10-6, град-1 | 8,9 |
Теплопроводность l , Вт/(м × град) | 16,76 |
Предел прочности при растяжении s в, МПа | 300-450 |
Условный предел текучести s 0,2, МПа | 250-380 |
Удельная прочность (s в/r × g)× 10-3, км | 7-10 |
Относительное удлинение d , % | 25-30 |
Относительное сужение Y , % | 50-60 |
Модуль нормальной упругости Е´ 10-3, МПа | 110,25 |
Модуль сдвига G´ 10-3, МПа | 41 |
Коэффициент Пуассона m , | 0,32 |
Твердость НВ | 103 |
Ударная вязкость KCU, Дж/см2 | 120 |
Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.
Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.
Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.
Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.
Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746-79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.
Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375-540 МПа, s 0,2 = 295-410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr-Ni коррозионностойких сталей.
Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).
При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300-600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.
Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.
Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5-6 нм.
Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.
Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.
При технологических и эксплуатационных нагревах, особенно выше 550-600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).
Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.
Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.
Таблица 17.1
Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746-79)
Марка | Ti, не менее | Не более | Твердость НВ, 10/1500/30, не более | ||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Si | Ni | C | Cl | N | O | |||
ТГ-90 | 99,74 | 0,05 | 0,01 | 0,04 | 0,02 | 0,08 | 0,02 | 0,04 | 90 |
ТГ-100 | 99,72 | 0,06 | 0,01 | 0,04 | 0,03 | 0,08 | 0,02 | 0,04 | 100 |
ТГ-110 | 99,67 | 0,09 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,05 | 110 |
ТГ-120 | 99,64 | 0,11 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,06 | 120 |
ТГ-130 | 99,56 | 0,13 | 0,03 | 0,04 | 0,03 | 0,10 | 0,03 | 0,08 | 130 |
ТГ-150 | 99,45 | 0,2 | 0,03 | 0,04 | 0,03 | 0,12 | 0,03 | 0,10 | 150 |
ТГ-Тв | 99,75 | 1,9 | — | — | 0,10 | 0,15 | 0,10 | — | — |
Таблица 17.2
Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807-91)
Обозначения марок | Ti | Al | V | Mo | Sn | Zr | Mn | Cr | Si | Fe | O | H | N | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ВТ1-00 | Основа | — | — | — | — | — | — | — | 0,08 | 0,15 | 0,10 | 0,008 | 0,04 | 0,05 |
ВТ1-0 | То же | — | — | — | — | — | — | — | 0,10 | 0,25 | 0,20 | 0,010 | 0,04 | 0,07 |
ВТ1-2 | То же | — | — | — | — | — | — | — | 0,15 | 1,5 | 0,30 | 0,010 | 0,15 | 0,10 |
ОТ4-0 | То же | 0,4-1,4 | — | — | — | 0,30 | 0,5-1,3 | — | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4-1 | То же | 1,5-2,5 | — | — | — | 0,30 | 0,7-2,0 | — | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4 | То же | 3,5-5,0 | — | — | — | 0,30 | 0,8-2,0 | — | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ВТ5 | То же | 4,5-6,2 | 1,2 | 0,8 | — | 0,30 | — | — | 0,12 | 0,30 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ5-1 | То же | 4,3-6,0 | 1,0 | — | 2,0 -3,0 | 0,30 | — | — | 0,12 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ6 | То же | 5,3-6,8 | 3,5-5,3 | — | — | 0,30 | — | — | 0,10 | 0,60 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ6с | То же | 5,3-6,5 | 3,5-4,5 | — | — | 0,30 | — | — | 0,15 | 0,25 | 0,15 | 0,015 | 0,04 | 0,10 |
ВТ3-1 | То же | 5,5-7,0 | — | 2,0-3,0 | — | 0,50 | — | 0,8-2,0 | 0,15-0,40 | 0,2-0,7 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ8 | То же | 5,8-7,0 | — | 2,8-3,8 | — | 0,50 | — | — | 0,20-0,40 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ9 | То же | 5,8-7,0 | — | 2,8-3,8 | — | 1,0-2,0 | — | — | 0,20-0,35 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ14 | То же | 3,5-6,3 | 0,9-1,9 | 2,5-3,8 | — | 0,30 | — | — | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ20 | То же | 5,5-7,0 | 0,8-2,5 | 0,5-2,0 | — | 1,5-2,5 | — | — | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ22 | То же | 4,4-5,7 | 4,0-5,5 | 4,0-5,5 | — | 0,30 | — | 0,5-1,5 | 0,15 | 0,5-1,5 | 0,18 | 0,015 | 0,05 | 0,10 |
ПТ-7М | То же | 1,8-2,5 | — | — | — | 2,0-3,0 | — | — | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
ПТ-3В | То же | 3,5-5,0 | 1,2-2,5 | — | — | 0,30 | — | — | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
АТ3 | То же | 2,0-3,5 | — | — | — | — | — | 0,2-0,5 | 0,20-0,40 | 0,2-0,5 | 0,15 | 0,008 | 0,05 | 0,10 |
Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.
Источник
Какое давление выдерживает титан
Титан
Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность (s в/r × g), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик.
Основные сведения о титане
Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия титана
Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана
В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Характеристики физико-механических свойств титана (ВТ1-00)
Плотность r , кг/м 3 | 4,5 × 10 -3 |
---|---|
Температура плавления Тпл, ° С | 1668± 4 |
Коэффициент линейного расширения a × 10 -6 , град -1 | 8,9 |
Теплопроводность l , Вт/(м × град) | 16,76 |
Предел прочности при растяжении s в, МПа | 300-450 |
Условный предел текучести s 0,2, МПа | 250-380 |
Удельная прочность (s в/r × g)× 10 -3 , км | 7-10 |
Относительное удлинение d , % | 25-30 |
Относительное сужение Y , % | 50-60 |
Модуль нормальной упругости Е´ 10 -3 , МПа | 110,25 |
Модуль сдвига G´ 10 -3 , МПа | 41 |
Коэффициент Пуассона m , | 0,32 |
Твердость НВ | 103 |
Ударная вязкость KCU, Дж/см 2 | 120 |
Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.
Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.
Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.
Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.
Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746-79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.
Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375-540 МПа, s 0,2 = 295-410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr-Ni коррозионностойких сталей.
Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).
При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300-600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.
Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.
Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5-6 нм.
Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.
Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.
При технологических и эксплуатационных нагревах, особенно выше 550-600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).
Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.
Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.
Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746-79)
Марка | Ti, не менее | Не более | |||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Si | Ni | C | Cl | N | O | |||
ТГ-90 | 99,74 | 0,05 | 0,01 | 0,04 | 0,02 | 0,08 | 0,02 | 0,04 | 90 |
ТГ-100 | 99,72 | 0,06 | 0,01 | 0,04 | 0,03 | 0,08 | 0,02 | 0,04 | 100 |
ТГ-110 | 99,67 | 0,09 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,05 | 110 |
ТГ-120 | 99,64 | 0,11 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,06 | 120 |
ТГ-130 | 99,56 | 0,13 | 0,03 | 0,04 | 0,03 | 0,10 | 0,03 | 0,08 | 130 |
ТГ-150 | 99,45 | 0,2 | 0,03 | 0,04 | 0,03 | 0,12 | 0,03 | 0,10 | 150 |
ТГ-Тв | 99,75 | 1,9 | — | — | 0,10 | 0,15 | 0,10 | — | — |
Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807-91)
Обозначения марок | Ti | Al | V | Mo | Sn | Zr | Mn | Cr | Si | Fe | O | H | N | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ВТ1-00 | Основа | — | — | — | — | — | — | — | 0,08 | 0,15 | 0,10 | 0,008 | 0,04 | 0,05 |
ВТ1-0 | То же | — | — | — | — | — | — | — | 0,10 | 0,25 | 0,20 | 0,010 | 0,04 | 0,07 |
ВТ1-2 | То же | — | — | — | — | — | — | — | 0,15 | 1,5 | 0,30 | 0,010 | 0,15 | 0,10 |
ОТ4-0 | То же | 0,4-1,4 | — | — | — | 0,30 | 0,5-1,3 | — | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4-1 | То же | 1,5-2,5 | — | — | — | 0,30 | 0,7-2,0 | — | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ОТ4 | То же | 3,5-5,0 | — | — | — | 0,30 | 0,8-2,0 | — | 0,12 | 0,30 | 0,15 | 0,012 | 0,05 | 0,10 |
ВТ5 | То же | 4,5-6,2 | 1,2 | 0,8 | — | 0,30 | — | — | 0,12 | 0,30 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ5-1 | То же | 4,3-6,0 | 1,0 | — | 2,0 -3,0 | 0,30 | — | — | 0,12 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ6 | То же | 5,3-6,8 | 3,5-5,3 | — | — | 0,30 | — | — | 0,10 | 0,60 | 0,20 | 0,015 | 0,05 | 0,10 |
ВТ6с | То же | 5,3-6,5 | 3,5-4,5 | — | — | 0,30 | — | — | 0,15 | 0,25 | 0,15 | 0,015 | 0,04 | 0,10 |
ВТ3-1 | То же | 5,5-7,0 | — | 2,0-3,0 | — | 0,50 | — | 0,8-2,0 | 0,15-0,40 | 0,2-0,7 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ8 | То же | 5,8-7,0 | — | 2,8-3,8 | — | 0,50 | — | — | 0,20-0,40 | 0,30 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ9 | То же | 5,8-7,0 | — | 2,8-3,8 | — | 1,0-2,0 | — | — | 0,20-0,35 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ14 | То же | 3,5-6,3 | 0,9-1,9 | 2,5-3,8 | — | 0,30 | — | — | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ20 | То же | 5,5-7,0 | 0,8-2,5 | 0,5-2,0 | — | 1,5-2,5 | — | — | 0,15 | 0,25 | 0,15 | 0,015 | 0,05 | 0,10 |
ВТ22 | То же | 4,4-5,7 | 4,0-5,5 | 4,0-5,5 | — | 0,30 | — | 0,5-1,5 | 0,15 | 0,5-1,5 | 0,18 | 0,015 | 0,05 | 0,10 |
ПТ-7М | То же | 1,8-2,5 | — | — | — | 2,0-3,0 | — | — | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
ПТ-3В | То же | 3,5-5,0 | 1,2-2,5 | — | — | 0,30 | — | — | 0,12 | 0,25 | 0,15 | 0,006 | 0,04 | 0,10 |
АТ3 | То же | 2,0-3,5 | — | — | — | — | — | 0,2-0,5 | 0,20-0,40 | 0,2-0,5 | 0,15 | 0,008 | 0,05 | 0,10 |
Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.
Источник
Источник