Какое давление действует на подводную лодку

Как работает подводная лодка?

Подводные лодки — невероятные технологии. Не так давно военно-морская сила полностью работала над водой; с добавлением подводной лодки к стандартному военному арсеналу, мир под поверхностью стал полем битвы.

Адаптации и изобретения, позволяющие матросам не только сражаться, но и жить в течение месяцев или даже лет под водой, являются одними из самых ярких событий в военной истории.

В этой статье вы узнаете, как подводная лодка погружается и движется под водой, как поддерживается жизнеобеспечение, как получает свое военное превосходство, как ориентируется в глубоком океане и как подводные лодки могут быть спасены при аварийных ситуациях.

ПОГРУЖЕНИЕ И ДВИЖЕНИЕ

Подводные лодки или корабли могут плавать, потому что вес воды, которую они вытесняют, равен весу судна. Это разность уровней воды создает выталкивающую силу, называемую силой Архимеда. Действует эта сила против силы тяжести, которая тянет корабль вниз. В отличие от корабля, подводная лодка может управлять своей плавучестью, что позволяет ей погружаться и всплывать по своему усмотрению.

Для управления плавучестью на подводной лодке имеются балластные и вспомогательные цистерны, которые могут быть поочередно заполнены водой или воздухом. Когда подводная лодка находится на поверхности, балластные цистерны заполнены воздухом, а общая плотность подводной лодки меньше, чем у окружающей ее воды. Для погружения подлодки балластные цистерны заполняются водой, а воздух выгоняется, пока общая плотность судна не станет больше, чем у воды, и подводная лодка начинает погружаться (отрицательная плавучесть). Сжатый воздух хранится на борту подводной лодки в специальных емкостях и используется для жизнеобеспечения и закачки в балластные цистерны. Кроме того, у подводной лодки есть подвижные наборы коротких «крыльев», называемых гидропланами, на корме, которые помогают контролировать угол погружения. Когда гидропланы расположены под углом, вода перемещается по корме, заставляя корму двигаться вверх; при этом носовая часть подводной лодки смотрит вниз – происходит погружение.

Чтобы поддерживать уровень подводной лодки на любой заданной глубине, подводная лодка поддерживает баланс воздуха и воды в цистернах, чтобы общая плотность была равна плотности воды (нейтральная плавучесть). Когда подводная лодка достигает своей крейсерской глубины, гидропланы выровняются так, что подводная лодка перемещается в воде. Для управления используют хвостовой руль, чтобы повернуть направо или налево и гидропланы для управления передним углом лодки. Кроме того, некоторые субмарины оснащены подвижным вторичным двигателем, который может поворачиваться на 360 градусов.

Для поднятия на поверхность, сжатый воздух вытекает из воздушных емкостей в балластные цистерны, и вода вытесняется из подводной лодки, пока ее общая плотность не будет меньше чем у окружающей воды (положительная плавучесть), и подводная лодка всплывает. Гидропланы располагают под углом, так чтобы вода поднималась над кормой, что заставляет корму двигаться вниз; при этом нос субмарины направлен ​​вверх. В аварийной ситуации балластные цистерны могут быстро заполняться воздухом высокого давления, чтобы очень быстро вывести подводную лодку на поверхность.

ЖИЗНЕОБЕСПЕЧЕНИЕ

В закрытой среде подводной лодки существуют три основные проблемы жизнеобеспечения: воздух, пригодный для дыхания; наличие пресной воды; поддержание температуры.

Поддержание качества воздуха

Воздух, которым мы дышим, состоит из четырех газов: азот (78%), кислород (21%); аргон (0,94%); двуокись углерода (0,04%).

Когда мы дышим воздухом, наши тела потребляют его кислород и превращают его в двуокись углерода. Выдыхаемый воздух содержит около 4,5% углекислого газа. Наши тела ничего не делают с азотом или аргоном. Подводная лодка — это запечатанный контейнер, содержащий людей и ограниченный запас воздуха. Есть три вещи, которые должны происходить, чтобы воздух на подводной лодке был пригоден для дыхания:

— Кислород нужно периодически пополнять, поскольку он потребляется. Если процент кислорода в воздухе уменьшается, человек задыхается;

— Углекислый газ необходимо удалять из воздуха. По мере того, как концентрация углекислого газа повышается, он становится токсином;

— водяные пары, которые мы выдыхаем, должны быть удалены.

Кислород поставляется либо из емкостей под давлением, или из генератора кислорода (который может образовывать кислород при электролизе воды), или какого-то «кислородного контейнера», который выделяет кислород очень горячей химической реакцией. Кислород либо непрерывно выпускается компьютеризированной системой, которая измеряет процентное содержание кислорода в воздухе или периодически выпускается партиями в течение дня.

Читайте также:  Какое давление в шинах 16 радиуса должно

Двуокись углерода может быть удалена из воздуха химически, используя газированную известь (гидроксид натрия и гидроксид кальция) в устройствах, называемых скрубберами. Двуокись углерода задерживается в газированной извести химической реакцией и удаляется из воздуха. Другие подобные реакции могут достигать той же цели.

Влага может быть удалена с помощью осушителя или химических веществ. Это предотвращает конденсацию на стенах и оборудовании внутри корабля.

Кроме того, другие примеси, такие как окись углерода или водород, которые генерируются оборудованием или сигаретным дымом, могут быть удалены с помощью горелок. Наконец, фильтры используются для удаления частиц грязи и пыли из воздуха.

Поддержание снабжения пресной водой

Большинство подводных лодок имеют дистилляционный аппарат, который может из морской воды производить пресную. Дистилляционная установка нагревает морскую воду до состояния водяного пара, в котором нет солей, а затем охлаждает водяной пар в сборный резервуар пресной воды. Дистилляционная установка на некоторых подводных лодках может производить от 40 000 до 150 000 литров пресной воды в день. Эта вода используется в основном для охлаждения электронного оборудования (например, компьютеров и навигационного оборудования) и для поддержки экипажа (например, питья, приготовления пищи и личной гигиены).

Поддержание температуры

Температура океана, окружающего подводную лодку, обычно составляет около 4 градусов Цельсия. Металл субмарины хорошо проводит внутреннее тепло к окружающей воде. Таким образом, для поддержания комфортной температуры внутри лодки используют электрические нагреватели. Электричество для нагревателей получают от ядерного реактора, дизельного двигателя или батарей (аварийного).

ИСТОЧНИК ПИТАНИЯ

На атомных подводных лодках используются ядерные реакторы, паровые турбины и редукторы для привода главного карданного вала, который обеспечивает прямое и обратное движение в воде (электродвигатель управляет одним и тем же валом при движении или в аварийной ситуации).

Подводные лодки также нуждаются в электроэнергии для управления оборудованием на борту. Для обеспечения этой мощности подводные лодки оснащены дизельными двигателями, которые сжигают топливо или ядерные реакторы, которые используют ядерное деление. На подводных лодках также есть аккумуляторы для подачи электроэнергии. Электрооборудование часто запускается от батарей, а питание от дизельного двигателя или ядерного реактора используется для зарядки батарей. В чрезвычайных ситуациях батареи могут быть единственным источником электроэнергии для запуска подводной лодки.

Дизельная подводная лодка — очень хороший пример гибридного устройства. Большинство дизельных субмарин имеют два или более дизельных двигателя. Дизельные двигатели могут работать с гребными винтами или могут запускать генераторы, которые перезаряжают очень большой аккумуляторный блок. Или они могут работать в комбинации, один двигатель управляет винтом, а другой — генератором. Используют дизельный двигатель для движения и зарядки батарей, когда лодка находится на поверхности (либо на небольшой глубине – воздух в двигатель подают через специальную кишку, один конец которой находится на поверхности). Как только батареи будут полностью заряжены, подводная лодка может погружаться под воду. Батареи питают электрические двигатели, управляющие винтами. Работа от батареи — единственный способ передвижения лодки под водой. Пределы технологии батареи серьезно ограничивают время, в течение которого дизель может оставаться под водой – периодически необходимо всплывать для подзарядки.

Из-за этих ограничений, было признано, что ядерная энергия на подводной лодке принесет огромную пользу. Ядерным реакторам не нужен кислород, поэтому ядерная субмарина может оставаться под водой в течение нескольких недель. Кроме того, поскольку ядерное топливо работает намного дольше, чем дизельное топливо (годы), атомная подводная лодка не должна выходить на поверхность или в порт для дозаправки и может оставаться в море гораздо дольше.

Ядерные подводные лодки и авианосцы оснащены ядерными реакторами, которые почти идентичны реакторам, используемым на электростанциях. Реактор производит тепло для генерирования пара, который приводит в действие паровую турбину. Турбина на судне непосредственно управляет винтами, а также электрогенераторами. Два основных различия между реакторами на электростанции и корабле: реактор на ядерном судне меньше и использует высокообогащенное топливо, чтобы выделять большое количество энергии при меньших размерах.

Свет не проникает глубоко в океан, поэтому подводные лодки должны перемещаться в воде практически вслепую. Однако они оснащены сложным навигационным оборудованием. Если на поверхности сложная глобальная система позиционирования точно определяет широту и долготу, то эта система не может работать, когда подводная лодка погружена. Под водой субмарина использует инерционные системы ведения (электрические, механические), которые отслеживают движение судна с фиксированной начальной точки с помощью гироскопов. Инерционные системы ведения должны быть точными и синхронизированными с другими навигационными системами, зависящими от поверхности. С помощью этих систем на борту подводная лодка может точно перемещаться и находиться в пределах ста метров от намеченного курса.

Читайте также:  Если шум в ушах какое давление

Чтобы найти цель, на подводной лодке используется активный и пассивный сонар. Активный сонар испускает импульсы звуковых волн, которые проходят через воду, отражаются от цели и возвращаются на корабль. Зная скорость звука в воде и время, перемещения звуковой волны к цели и обратно, компьютеры могут быстро рассчитать расстояние между подводной лодкой и мишенью. Киты, дельфины и летучие мыши используют ту же технику для обнаружения добычи (эхолокация). Пассивный сонар включает в себя прослушивание звуков, генерируемых мишенью. Системы сонара также могут использоваться для перестройки инерциальных навигационных систем путем определения известных характеристик океанского дна.

ВЫЖИВАНИЕ

Когда подводная лодка тонет из-за столкновения с чем-то или бортового взрыва, экипаж будет вещать радиосигнал бедствия или запускать буй, который будет передавать сигнал бедствия и местоположение лодки. В зависимости от обстоятельств катастрофы ядерные реакторы будут остановлены, а подводная лодка может работать только на батарее.

Если это так, то экипаж подводной лодки сталкивается с четырьмя основными опасностями:

— Наполнение водой субмарины должно быть сведено к минимуму;

— Использование кислорода должно быть сведено к минимуму, чтобы доступное количество кислорода хватило до возможных попыток спасения;

— Уровни углекислого газа повысятся и могут вызвать опасные токсические эффекты;

— Если батареи разрядятся, тогда системы отопления не работают, и температура внутри лодки понизится.

Спасение с поверхности должно происходить быстро, обычно в течение 48 часов после аварии. Попытки, как правило, связаны с попыткой получить какой-либо тип спасательного транспортного средства, чтобы вывезти экипаж, или прикрепить какой-либо тип устройства для подъема подводной лодки с морского дна. Аварийные транспортные средства включают мини-подводные лодки и спасательные колокола.

Мини-субмарина может самостоятельно подплыть к затонувшей подводной лодке, пристыковаться со спасательным люком, создать воздухонепроницаемое уплотнение, чтобы люк можно было открыть и загрузить часть экипажа. Колокола обычно опускается с судна поддержки до подводной лодки, где происходит аналогичная операция.

Чтобы поднять подводную лодку, как правило, после того, как экипаж был извлечен, понтоны могут быть размещены вокруг субмарины и раздуты, чтобы выплыть на поверхность.

Есть и другие способы спасения экипажа. Важными факторами успеха спасательной операции являются глубина, очертание морского дна, течения вблизи лодки, положение субмарины, море и погодные условия на поверхности.

Источник

Давление под водой в морских глубинах: как измерить

Со школьных лет всем известно, что вода плотнее воздуха. Из-за этого изменение давления под водой с погружением происходит быстрее, чем смена его при увеличении высоты. Так, при спуске на 10 метров происходит рост давления на одну атмосферу. В глубоких океанических впадинах, достигающих 10 тысяч метров, этот показатель составляет 1 тысячу атмосфер. Как узнать, как изменяется давление под водой и как оно влияет на живых существ, будет описано ниже.

Физические расчеты

Плотность соленой морской воды на 1-2% выше показателя пресной жидкости. Поэтому с определенной точностью можно высчитать, какое давление под водой, потому что при погружении на каждые 10 метров происходит его рост на одну атмосферу. К примеру, подводная лодка на глубине 100 метров испытывает давление в 10 атмосфер, что можно сравнить с показателями внутри парового котла в паровозе. Из этого следует, что каждому слою в море соответствует свой гидростатический показатель. Все подводные лодки снабжены манометрами, которые измеряют давление воды за бортом, на основании чего можно определить степень погружения.

какое давление под водой

На большой глубине становится заметной сжимаемость воды, поскольку ее плотность в глубоких слоях выше, чем на поверхности. И давление растет быстрее, чем по линейному закону, из-за чего график слегка отклоняется от прямой линии. Дополнительное давление, вызванное сжатием жидкости, увеличивается пропорционально квадрату. При спуске на 11 км оно составляет около 3% от всего давления на этой глубине.

Читайте также:  Какое давление в шинах тракторного прицепа 2птс4

Как исследуют моря и океаны

При изучении используются батискафы и батисферы. Батисфера — это стальной шар с пустотой внутри, который выдерживает очень высокое давление морских глубин. В стенку батисферы ставится иллюминатор — герметичное отверстие, закрытое прочными стеклами. Батисферу с исследователем опускают с корабля на стальном тросе до того слоя воды, который не может осветить прожектор. Благодаря этому приспособлению удавалось спуститься до 1 км. Батискафы с батисферой (укрепленной внизу большой цистерной из стали), которая заполнена бензином, может достигнуть еще большего погружения.

Поскольку плотность бензина меньше воды, подобная конструкция может перемещаться в море, словно дирижабль в воздухе. Вместо легкого газа используется бензин. При этом батискаф снабжен запасом балласта и двигателем, благодаря которому он, в отличии от батисферы, может перемещаться самостоятельно, не требуя связи с кораблем на поверхности.

Исследования давления под водой на глубине

Поначалу батискаф плавает по воде, словно всплывшая подводная ложка. Для начала погружения в пустые балластные отсеки вливается забортная вода, из-за чего конструкция начинает опускаться под воду все глубже и глубже, пока не достигнет дна. Для всплытия на поверхность выполняется сброс балласта, и без лишнего груза батискаф легко поднимается на поверхность.

под водой

Самое глубокое погружение с использованием батискафа было выполнено 23 января 1960 года, когда он пробыл 20 минут в Марианской впадине на глубине 10919 метров под водой, где давление составляло более 1150 атмосфер (расчет проводился с учетом повышения плотности жидкости из-за сжатия и солености). По итогу эксперимента исследователи обнаружили живых существ, обитающих даже в таких труднодоступных местах.

давление под водой на глубине

Давление воды

Ныряя, аквалангист или пловец сталкивается с гидростатическим давлением по всей поверхности тела, при этом оно превышает нормальные показатели его организма. Хотя тело водолаза может не соприкасаться с водой напрямую за счет резинового костюма, он сталкивается с тем же давлением, что оказывает влияние на тело пловца, поскольку воздух в скафандре требуется сжать с учетом показателей окружающей среды. Из-за этого даже подаваемый через шланг воздух для дыхания должен закачиваться с учетом давления воды на предполагаемой глубине. Тот же показатель обязан быть у воздуха, доставляемого из баллонов в маску аквалангиста. Таким образом, ныряльщикам приходится дышать воздухом с непривычными показателями.

давление под водой на глубине

Не поможет от давления и водолазный колокол или кессон, поскольку в нем следует сжать воздух, чтобы он не попал под колокол, то есть увеличить до показателей окружающей среды. По этой причине при постепенном погружении происходит постоянная подкачка воздуха с расчетом на давление воды на достигнутой глубине.

Высокие показатели плохо влияют на самочувствие и здоровье человека, из-за чего есть определенный предел, до которого могут работать люди без вреда для здоровья. Обычно при нырянии в водолазном костюме он достигает 40 метров, что соответствует 4 атмосферам. Опуститься на большую глубину водолаз может только в жестком скафандре, который примет на себя давление воды. В нем можно спокойно погрузиться до 200 метров.

Влияние на здоровье человека

При долгом нахождении под водой при высоком давлении немалое количество воздуха растворится в крови и других биологических жидкостях тела. Если произойдет быстрый подъем водолаза на поверхность, то растворенный воздух начнет выделяться из крови в виде пузырьков. Резкое выделение пузырьков может привести к появлению сильной боли по всему телу и привести к кессонной болезни. Поэтому поднятие водолаза, долго проработавшего на большой глубине, может занять много времени (несколько часов), чтобы растворенный газ выделялся постепенно и без пузырьков.

давление под водой на глубине

Давление в море и морские животные

Хотя ранее были указаны огромные значения давления, имеющего место на дне моря, для морских животных это не столь существенные показатели. Местные обитатели могут в течении суток легко и спокойно переносить огромные колебания этого показателя. Однако некоторые такие животные очень плохо переносят резкую смену давления. К примеру, при извлечении на сушу морской окунь раздуется, особенно если его очень быстро извлечь из воды.

Атмосферное давление под водой достаточно просто рассчитывается. Достаточно запомнить, что на каждые 10 метров приходится 1 атмосфера. Однако на больших глубинах вступают в силу и другие показатели, такие как сжатие и плотность воды. В связи с чем придется проводить расчет с учетом этих значений.

Источник