Какое давление действует на батискаф

Содержание статьи

Как батискаф выдерживает давление

IT News

Last up Вс, 29 Янв 2017 11pm

Как устроен батискаф

К подводным аппаратам относятся батисферы и батискафы. Это небольшие и очень специализированные подводные лодки. Их чаще используют для научных исследований, чем для военных целей.

Эти малюсенькие корабли с очень прочными корпусами, зачастую сделанными из титана, могут погружаться в океане на рекордные глубины. В 1960 году французский глубоководный аппарат «Триест» поставил рекорд погружения, достигнув на глубине 35 802 фута дна Тихого океана в районе Мариинской впадины.

Подводные аппараты могут не просто находиться там, где давление в 1000 раз больше, чем на уровне моря, но и рассматривать и фотографировать подводные территории с помощью фото и видеокамер. А механические «руки» могут брать геологические и биологические пробы и доставлять их на поверхность в сетчатых контейнерах. Эти же «руки» могут помочь отремонтировать оборудование на подводных трубопроводах или неисправные кабели на подводных линиях связи.

Батискаф

Этот аппарат состоит из очень прочного экипажного отсека, соединенного с огромной емкостью, заполненной бензином.Внутри емкости находятся балластные цистерны, которые наполняются морской водой при погружении и опорожняются при всплытии. Значительная часть оборудования батискафа расположена с его наружной стороны: прожектора, теле и кинокамеры, проблесковые огни — все, что помогает увидеть в кромешной темноте океанских глубин.

Батискаф «Элвин», изображенный выше, помог сделать много открытий при подводных исследованиях.

Внутреннее убранство тесного отсека управления на батискафе «Элвин» связано с различными приборами.

Двигатель на принципе масляного насоса

Наполненные бензином цистерны и растягиваемая диафрагма компенсируют эффекты связанные с давлением.

Давление воды растет с глубиной

При увеличении глубины на каждые 3300 футов давление возрастает на 100 атмосфер. (Одна атмосфера равна давлению всего земного воздушного столбе на уровне моря).

Поверхности сферической формы лучше всего противостоят давлению благодаря равномерному его распределению по поверхности. Прямоугольники раздавить легче.

Источник

Почему на человека в Батискафе действует давление, если он сидит внутри? Т.е. давление на человека, а не металл.

Когда говорят про декомпрессионную болезнь у человека без защиты, если резко подняться из воды, всё понятно. Но при чем тут Глубоководные устройства? Разве они не должны давление на себя принимать? Металл сверху принимает давление, а внутри всё так же как на поверхности. Или давление умет проходить сквозь вещество и действовать на человека «через стену»?

А почему вы решили, что в батискафе действует какое-то дополнительное давление? Это совершенно не так!

Батискаф имеет прочную герметичную капсулу, внутри которой поддерживается давление близкое к нормальному атмосферному. В ней и размещается экипаж. Никакому избыточному давлению люди не подвергаются, на какую бы глубину батискаф ни опустился.

Можно ли » качаться» при гипертонии? Как правильно нагружать себя без последствий для сердца?

Можно, только осторожно. Во-первых, надо проконсультироваться с врачом на тему того, насколько все сильно с гипертонией. Во-вторых, нельзя злоупотреблять кардио.

Какая сила давления действует на водолаза при его погружении на 50 метров?

На водолаза действует следующая сила: P=pgh, P-давление, p-плотность, h-высота столба.

p=1000 кг/м³ плотность воды

10 м/с² ускорение свободного падения

h-глубина погружения водолаза (h = 50 м)

1 0 · Хороший ответ

Как снизить давление?

Понизить давление можно, положив под язык, такие препараты, как Каптоприл, Лизиноприл, Нифедипин, Моксонидин.

Гипертоникам следует постоянно принимать лекарства для предотвращения скачков артериального давления, контролировать свой вес, сахар в крови, холестерин, свертываемость крови, следить за почками, эндокринными железами (щитовидная, надпочечники), не курить, не злоупотреблять спиртными напитками, придерживаться гипохолестериновой диеты, исключить из рациона продукты с избытком соли.

Ответ подготовила Рано Ишматова, автор сайта MedicoWay

Источник

Давление под водой в морских глубинах: как измерить

Со школьных лет всем известно, что вода плотнее воздуха. Из-за этого изменение давления под водой с погружением происходит быстрее, чем смена его при увеличении высоты. Так, при спуске на 10 метров происходит рост давления на одну атмосферу. В глубоких океанических впадинах, достигающих 10 тысяч метров, этот показатель составляет 1 тысячу атмосфер. Как узнать, как изменяется давление под водой и как оно влияет на живых существ, будет описано ниже.

Физические расчеты

Плотность соленой морской воды на 1-2% выше показателя пресной жидкости. Поэтому с определенной точностью можно высчитать, какое давление под водой, потому что при погружении на каждые 10 метров происходит его рост на одну атмосферу. К примеру, подводная лодка на глубине 100 метров испытывает давление в 10 атмосфер, что можно сравнить с показателями внутри парового котла в паровозе. Из этого следует, что каждому слою в море соответствует свой гидростатический показатель. Все подводные лодки снабжены манометрами, которые измеряют давление воды за бортом, на основании чего можно определить степень погружения.

На большой глубине становится заметной сжимаемость воды, поскольку ее плотность в глубоких слоях выше, чем на поверхности. И давление растет быстрее, чем по линейному закону, из-за чего график слегка отклоняется от прямой линии. Дополнительное давление, вызванное сжатием жидкости, увеличивается пропорционально квадрату. При спуске на 11 км оно составляет около 3% от всего давления на этой глубине.

Как исследуют моря и океаны

При изучении используются батискафы и батисферы. Батисфера — это стальной шар с пустотой внутри, который выдерживает очень высокое давление морских глубин. В стенку батисферы ставится иллюминатор — герметичное отверстие, закрытое прочными стеклами. Батисферу с исследователем опускают с корабля на стальном тросе до того слоя воды, который не может осветить прожектор. Благодаря этому приспособлению удавалось спуститься до 1 км. Батискафы с батисферой (укрепленной внизу большой цистерной из стали), которая заполнена бензином, может достигнуть еще большего погружения.

Читайте также:  Какие значения температуры и давления соответствуют тройной точке воды

Поскольку плотность бензина меньше воды, подобная конструкция может перемещаться в море, словно дирижабль в воздухе. Вместо легкого газа используется бензин. При этом батискаф снабжен запасом балласта и двигателем, благодаря которому он, в отличии от батисферы, может перемещаться самостоятельно, не требуя связи с кораблем на поверхности.

Исследования давления под водой на глубине

Поначалу батискаф плавает по воде, словно всплывшая подводная ложка. Для начала погружения в пустые балластные отсеки вливается забортная вода, из-за чего конструкция начинает опускаться под воду все глубже и глубже, пока не достигнет дна. Для всплытия на поверхность выполняется сброс балласта, и без лишнего груза батискаф легко поднимается на поверхность.

Самое глубокое погружение с использованием батискафа было выполнено 23 января 1960 года, когда он пробыл 20 минут в Марианской впадине на глубине 10919 метров под водой, где давление составляло более 1150 атмосфер (расчет проводился с учетом повышения плотности жидкости из-за сжатия и солености). По итогу эксперимента исследователи обнаружили живых существ, обитающих даже в таких труднодоступных местах.

Давление воды

Ныряя, аквалангист или пловец сталкивается с гидростатическим давлением по всей поверхности тела, при этом оно превышает нормальные показатели его организма. Хотя тело водолаза может не соприкасаться с водой напрямую за счет резинового костюма, он сталкивается с тем же давлением, что оказывает влияние на тело пловца, поскольку воздух в скафандре требуется сжать с учетом показателей окружающей среды. Из-за этого даже подаваемый через шланг воздух для дыхания должен закачиваться с учетом давления воды на предполагаемой глубине. Тот же показатель обязан быть у воздуха, доставляемого из баллонов в маску аквалангиста. Таким образом, ныряльщикам приходится дышать воздухом с непривычными показателями.

Не поможет от давления и водолазный колокол или кессон, поскольку в нем следует сжать воздух, чтобы он не попал под колокол, то есть увеличить до показателей окружающей среды. По этой причине при постепенном погружении происходит постоянная подкачка воздуха с расчетом на давление воды на достигнутой глубине.

Высокие показатели плохо влияют на самочувствие и здоровье человека, из-за чего есть определенный предел, до которого могут работать люди без вреда для здоровья. Обычно при нырянии в водолазном костюме он достигает 40 метров, что соответствует 4 атмосферам. Опуститься на большую глубину водолаз может только в жестком скафандре, который примет на себя давление воды. В нем можно спокойно погрузиться до 200 метров.

Влияние на здоровье человека

При долгом нахождении под водой при высоком давлении немалое количество воздуха растворится в крови и других биологических жидкостях тела. Если произойдет быстрый подъем водолаза на поверхность, то растворенный воздух начнет выделяться из крови в виде пузырьков. Резкое выделение пузырьков может привести к появлению сильной боли по всему телу и привести к кессонной болезни. Поэтому поднятие водолаза, долго проработавшего на большой глубине, может занять много времени (несколько часов), чтобы растворенный газ выделялся постепенно и без пузырьков.

Давление в море и морские животные

Хотя ранее были указаны огромные значения давления, имеющего место на дне моря, для морских животных это не столь существенные показатели. Местные обитатели могут в течении суток легко и спокойно переносить огромные колебания этого показателя. Однако некоторые такие животные очень плохо переносят резкую смену давления. К примеру, при извлечении на сушу морской окунь раздуется, особенно если его очень быстро извлечь из воды.

Атмосферное давление под водой достаточно просто рассчитывается. Достаточно запомнить, что на каждые 10 метров приходится 1 атмосфера. Однако на больших глубинах вступают в силу и другие показатели, такие как сжатие и плотность воды. В связи с чем придется проводить расчет с учетом этих значений.

Источник

Источник

Батискаф

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2020; проверки требуют 28 правок.

Батиска́ф (Bathyscaphe) (от греч. βαθύς — глубокий и σκάφος — судно) — самоходный подводный аппарат для океанографических и других исследований на больших глубинах.

В отличие от других глубоководных обитаемых аппаратов и «классических» подводных лодок, батискафы используют поплавок с бензином для создания положительной плавучести[1][2]. Поплавок является лёгким корпусом аппарата, под ним закреплен сферический прочный корпус — гондола (аналог батисферы), в которой в условиях нормального атмосферного давления находятся аппаратура, пульты управления и экипаж. Движется батискаф с помощью гребных винтов, приводимых в движение электромоторами.

Батискафы использовались до 1980-х годов[* 1] и раньше были единственным средством для достижения рекордных глубин. Затем в глубоководных аппаратах смогли отказаться от громоздкого бензинового поплавка: положительную плавучесть стали создавать за счёт прочного корпуса (теперь достаточно облегчённого) и синтактической пены[5][6].

Иногда батискафами называют любые подводные аппараты.

История[править | править код]

Подводные лодки, построенные по «классической» схеме имеют ограниченную глубину погружения, обусловленную не только прочностью прочного корпуса (само существование батискафов, способных погружаться на многокилометровые глубины свидетельствует о том, что создание прочного корпуса не является технической проблемой), а тем, что на подводных лодках вытеснение воды из балластных цистерн производится сжатым воздухом, хранящимся на борту подводной лодки в газовых баллонах высокого давления. Как правило, давление воздуха в газовых баллонах составляет около 150-200 кгс/см2. При погружении в морские глубины давление воды возрастает на 1 кгс/см2 на каждые 10 метров глубины. Таким образом, на глубине 100 м давление составит 10 кгс/см2, а на глубине 1500 м — 150 кгс/см2. Фактически сжатый воздух, находящийся в типовом газовом баллоне под давлением 150 кгс/см2 на такой глубине уже не является «сжатым», и вытеснить воду из балластной цистерны уже не может. На глубине 11 тысяч метров («Бездна Челленджера») давление воды составляет около 1100 кгс/см2, соответственно, воздух в газовых баллонах должен быть сжат до большего значения.

До начала 2000-х годов считалось, что сконструировать газовые баллоны, трубопроводы, клапаны и иную арматуру, рассчитанную на давление более 1100 кгс/см2, имеющую при этом разумную для судна массу, размеры и 100 % надёжность, технически невозможно. В настоящее время производители трубопроводной газовой арматуры, фитингов и бесшовных труб, предлагают серийные изделия с колоссальным рабочим давлением вплоть до 10 500 кгс/см2 (1050,0 МПа)[7][8][9][10] с классом герметичности «А» по ГОСТ 4594-2005 «Арматура трубопроводная запорная. классы и нормы герметичности затворов», что перевело дискуссию из плоскости «техническая возможность» изготовления аппарата в плоскость «целесообразность изготовления».

Также следует учитывать, что сжатые газы при расширении охлаждаются, а при уменьшении давления от колоссального до нормального охлаждённый газ может вызвать замерзание клапанов, кингстонов и иной арматуры.

Читайте также:  Какую работу совершает газ расширяясь при постоянном давлении 6 кпа

Идея построить глубоководный аппарат, способный достичь предельных океанских глубин, пришла швейцарскому учёному Огюсту Пиккару в довоенные годы при работе над первым в мире стратостатом FNRS-1. Огюст Пиккар предложил построить судно, устроенное по принципу аэростата, стратостата или дирижабля. Вместо баллона, заполненного водородом или гелием, подводный аппарат должен иметь поплавок, заполненный каким-нибудь веществом с плотностью, меньшей, чем плотность воды. Вещество при большом давлении не должно изменять свои физические и химические свойства, поплавок должен нести груз и при этом поддерживать положительную плавучесть судна. Погружение аппарата, получившего название батискаф, происходит с помощью тяжёлого груза (балласта), для всплытия на поверхность балласт сбрасывается. Первый батискаф FNRS-2 был построен Огюстом Пиккаром в 1948 году.

Отвечая на вопрос, почему после стратостата он стал конструировать батискаф, Огюст Пиккар отмечал, что

эти аппараты чрезвычайно сходны между собой, хотя их назначение противоположно.

Со свойственным ему чувством юмора он пояснял:

Возможно, судьбе было угодно создать это сходство именно для того, чтобы работать над созданием обоих аппаратов мог один учёный…

Конечно, конструирование батискафа — не забава для детей. Необходимо решить бесконечное множество сложнейших задач. Но ведь не бывает непреодолимых трудностей!

— Огюст Пикар

Конструкция[править | править код]

Конструкция батискафа FNRS-3

1 — нос 2 и 6 — цистерны водяного балласта 3 — открытая рубка 4 — палубный люк 5 — заполняемая водой шахта 7 — корма 8 и 18 — отсеки, заполненные бензином 9 и 14 — аварийный балласт10 — «вестибюль» 11 — люк в гондолу (с иллюминатором) 12 — «клетка» 13 — гондола 15 — бункеры с «дробью» 16 — иллюминатор 17 — прожектор 19 — компенсирующий отсек 20 — гайдроп

Батискаф состоит из двух основных частей: лёгкого корпуса — поплавка и прочного корпуса — гондолы.

Поплавок (лёгкий корпус) имеет такое же значение, как спасательный круг для тонущего человека или как баллон с водородом или гелием у дирижабля. В отсеках поплавка находится вещество легче воды, сообщающее положительную плавучесть судну. На батискафах середины XX века использовался бензин, имеющий плотность около 700 кг/м3. Один кубический метр бензина способен удерживать на плаву груз весом около 300 кг. Чтобы выровнять гидростатическое давление внутри поплавка с давлением внешней среды — бензин отделён от воды эластичной перегородкой, позволяющей бензину сжиматься. Вероятно, в середине XX века кораблестроители не смогли найти вещество лучше бензина, а в батискафе Deepsea Challenger (2012 г.) применён композитный материал с содержащимися в нём полыми стеклянными сферами.

Весьма перспективно использовать в качестве наполнителя поплавка литий — металл с плотностью почти в два раза меньшей, чем у воды (точнее 534 кг/м3), это значит, что один кубический метр лития может удерживать на плаву почти на 170 кг больше, чем один кубический метр бензина. Однако литий — щелочной металл, активно реагирующий с водой, следует каким-то образом надёжно разделить эти вещества, не допустить их контакта.

Экипаж, системы жизнеобеспечения, приборы управления и научные приборы размещены в гондоле (прочном корпусе). Гондолы всех существующих батискафов представляют собой сферу, так как сфера — геометрическое тело, имеющее наибольший объём при наименьшей площади поверхности. Полая сфера при равной толщине стенок (в сравнении, например, с параллелепипедом или цилиндром равного объёма) будет иметь меньшую массу. Также сфера обладает абсолютной симметрией, для сферического прочного корпуса легче всего сделать инженерные расчёты. Так как на больших глубинах огромное давление воды сжимает гондолу, её наружный и внутренний диаметр несколько уменьшается. Поэтому гондола крепится к поплавку не жёстко, а с возможностью совершать некоторое смещение. Вся аппаратура внутри гондолы не прикреплена к стенкам, а смонтирована на раме, позволяющей стенкам беспрепятственно сближаться.

Схема глубоководного аппарата с полисферическим прочным корпусом

С целью увеличения обитаемого объёма увеличивать диаметр гондолы нерационально, так как это ведёт к увеличению общей высоты глубоководного аппарата. Перспективным направлением является строительство батискафов с полисферическим (составным из нескольких сфер) прочным корпусом.

Гондолы батискафов середины XX века изготавливались из прочной легированной стали. Перспективно применять более лёгкие материалы для прочных корпусов подводных аппаратов. Пригодность материала для постройки глубоководного аппарата определяется отношением допускаемого механического напряжения к удельному весу (удельная прочность); чем больше эта величина, тем глубже может погружаться аппарат. Поэтому несколько менее прочные, но зато гораздо более лёгкие, чем сталь, материалы, имеют преимущество перед сталью. К таким материалам относятся титановые и алюминиевые сплавы, а также пластмассы. Эти материалы не подвержены коррозии в морской воде.

Механические свойства некоторых конструкционных материалов

МатериалУдельный вес,

г/см3

Допускаемое напряжение при растяжении,

кг/см2

Удельная прочность при растяжении,

кг/см2

Прочная сталь7,8510 0001 290
Титановый сплав4,536 0001 310
Алюминиевый сплав2,84 3001 520
Пластмасса1,73 0001 770

Электропитание батискаф получает от аккумуляторов. Изолирующая жидкость окружает аккумуляторные банки и электролит, на неё через мембрану передаётся давление забортной воды. Аккумуляторы не разрушаются на огромной глубине.

Батискаф приводится в движение электрическими двигателями, движители — гребные винты. Электродвигатели защищаются таким же способом, как и аккумуляторные батареи. Если у батискафа отсутствует судовой руль — тогда поворот производился включением только одного двигателя, разворот почти на месте — работой двигателей в разные стороны.

Скорость спуска и подъём батискафа на поверхность регулируется сбрасыванием основного балласта в виде стальной или чугунной дроби, находящейся в воронкообразных бункерах. В самом узком месте воронки стоят электромагниты, при протекании электрического тока под действием магнитного поля дробь как бы «затвердевает», при отключении тока она высыпается.

Батискаф с поплавком, заполненным литием, будет иметь интересную особенность. Так как литий практически несжимаем, то при погружении относительная плавучесть батискафа будет увеличиваться (на глубине плотность морской воды возрастает), и батискаф «зависнет». Батискаф должен иметь компенсирующий отсек с бензином; для того, чтобы продолжить спуск, необходимо выпустить часть бензина, тем самым уменьшив плавучесть.

Система аварийного всплытия представляет собой аварийный балласт, подвешенный на раскрывающихся замках. От раскрытия замки удерживаются электромагнитами, для сброса достаточно отключить электрический ток. Аналогичное крепление имеют аккумуляторные батареи и гайдроп — длинный расплетённый свободно свисающий стальной канат или якорная цепь. Гайдроп предназначен для уменьшения скорости спуска (вплоть до полной остановки) непосредственно у морского дна. Если аккумуляторы разряжаются — автоматически происходил сброс балласта, аккумуляторов и гайдропа, батискаф начинает подъём на поверхность.

Погружение и всплытие батискафов[править | править код]

Схема погружения и всплытия батискафа «Архимед»

  • На поверхности батискаф удерживается за счёт отсеков, заполненных бензином и благодаря тому, что цистерны водяного балласта, шахта для посадки экипажа в гондолу и свободное пространство в бункерах с дробью заполнены воздухом.
  • После того, как цистерны водяного балласта, шахта для посадки экипажа в гондолу и свободное пространство в бункерах с дробью заполняются водой, начинается погружение. Эти объёмы сохраняют постоянное сообщение с забортным пространством для выравнивания гидростатического давления во избежание деформации корпуса.
  • Так как бензин (при высоком давлении) сжимается больше, чем вода, выталкивающая сила уменьшается, скорость погружения батискафа увеличивается, экипаж должен постоянно сбрасывать балласт (стальную дробь).

По наблюдениям Жака Пиккара и Дона Уолша (экипаж батискафа «Триест», погружение 23 января 1960 года на дно Марианской впадины) на глубине 10 км объём бензина в поплавке уменьшился на 30% (то есть на 3% на каждый километр спуска). Также следует принять во внимание уменьшение объёма бензина вследствие его охлаждения.

  • При приближении ко дну нижний свободно свисающий конец гайдропа ложится на дно, часть его веса «снимается» с корпуса батискафа, увеличивается плавучесть. В определённый момент плавучесть становится «нулевой» и подводный аппарат неподвижно зависает на некотором расстоянии от дна.
  • Если батискаф попадает в плотные слои воды и «зависает», выпускается часть бензина из компенсирующего отсека, погружение возобновляется. Также часть бензина выпускается, если батискаф «завис» на гайдропе довольно далеко от дна.
  • После проведения научных экспериментов экипаж сбрасывает балласт (стальную дробь), начинается подъём. При необходимости аварийного всплытия может быть сброшен аварийный балласт, гайдроп и аккумуляторные батареи. Все эти детали удерживаются на корпусе батискафа замками с электромагнитами, достаточно отключить электрический ток. Также если аккумуляторы разряжаются — ток в электромагнитах исчезает, исчезает магнитное поле, замки раскрываются, происходит аварийный сброс.
  • После всплытия на поверхность шахта для посадки экипажа в гондолу и цистерны водяного балласта продуваются сжатым воздухом, батискаф получает дополнительную плавучесть, экипаж покидает корабль.

Батискафы[править | править код]

Все построенные батискафы[12]

НазваниеСпуск

на воду

ГлубинаСтранаКомментарии и источники
FNRS-219484 000 мБельгияПерестроен в FNRS-3
FNRS-319534 000 мФранция
Триест195311 000 мИталия, СШАГлубина дана для гондолы «Крупп»; гондола «Терни» использована в 1-й версии «Триеста-2»
Архимед196111 000 мФранция
Триест-219646 000 мСШАСильно изменён в 1966 году[* 2] и глубина дана для новой гондолы; [14]
Поиск-619796 000 мСССРТолько испытания, не принят ВМФ; [4]

Глубоководные беспоплавковые аппараты[править | править код]

Схема глубоководного аппарата «Алвин»

Обитаемые подводные аппараты, не являющиеся батискафами, называют беспоплавковыми[15]. Такие аппараты не имеют выраженного поплавка и создают плавучесть в том числе за счёт прочного корпуса. Это условное название, так как в глубоководных аппаратах от поплавка полностью не отказываются, но вместо бензина используют более совершенную синтактическую пену. Например, аппараты «Мир» имеют 8 кубических метров синтактической пены, а «Deepsea Challenger» заполнен ей на 70 %.

Представители

Интересные факты[править | править код]

  • В 1967 году на обитаемый глубоководный аппарат «Алвин» совершила нападение рыба-меч. Достигнув дна на глубине 610 м у берегов Флориды, аппарат потревожил этого жителя океана, отдыхавшего на песчаном грунте. Меч пронзил внешнюю полистироловую оболочку лёгкого корпуса и застрял в ней, не повредив проходящий рядом электрический кабель. Как выяснилось, рыбу привлёк свет иллюминатора.
  • 15 марта 1966 года тот же обитаемый глубоководный аппарат «Алвин» участвовал в поиске одной из трёх термоядерных авиабомб, аварийно сброшенных американским стратегическим бомбардировщиком B-52 в Средиземное море. Через 80 минут после погружения, на глубине 777 м экипаж аппарата заметил парашют, а затем и саму бомбу.

См. также[править | править код]

  • Автономный необитаемый подводный аппарат
  • Батисфера
  • Водолазный колокол
  • Мезоскаф
  • Мезоскаф «Огюст Пиккар»
  • Подводный аппарат
  • Подводный самолёт (мезоскаф с подводными крыльями)
  • Поиск-6
  • Посейдон

[17]

Примечания[править | править код]

Комментарии

  1. ↑ «Триест-2 (англ.)русск.» снят с эксплуатации в 1984 году[3], а испытания «Поиска-6» прервали в 1987[4].
  2. ↑ Перестроенный в 1966 году батискаф иногда считают отдельным аппаратом и для удобства могут называть «Trieste III»[13].

Источники

  1. ↑ Sea Cliff (DSV-4) (недоступная ссылка). Source al History. — «The basic difference between submersibles, submarines and a bathyscaphe is that most of the submersibles submarine’s buoyant volume is made up of air while the buoyant volume of a bathyscaphe is principally a light weight liquid, such as aviation gasoline.». Архивировано 2 марта 2008 года.
  2. ↑ Батискаф. Большая российская энциклопедия.
  3. ↑ The Home of the Bathyscaph Trieste Alumni Association.
  4. ↑ 1 2 пр.1906 Поиск-6 — SUBMERSIBLE. MilitaryRussia.Ru.
  5. ↑ Busby, R. F. Manned Submersibles. — Office of the Oceanographer of the y, 1976. — С. 287, 296.. — «In most submersibles (excluding the bathyscaphs) the pressure hull exerts a positively buoyant force».
  6. ↑ Анатолий Сагалевич. Глубина. — Яуза-пресс, 2017. — С. 16. — ISBN 978-5-04-054016-7.. — «Главную роль в создании аппаратов нового поколения сыграло изобретение синтактика».
  7. ↑ Maximator High Pressure Valves up to 10500 bar.
  8. ↑ Parker High Pressure Fittings.
  9. ↑ Swagelok High Pressure Fittings.
  10. ↑ Maximator Gas Busters up to 2400 bar.
  11. ↑ М. Н. Диомидов, А. Н. Дмитриев. Покорение глубин. — Ленинград: Судостроение, 1964. — С. 226-230. — 379 с.
  12. ↑ Анатолий Сагалевич. Глубина. — Яуза-пресс, 2017. — С. 16. — ISBN 978-5-04-054016-7.. — «Судя по опубликованным данным, всего в мире было создано пять батискафов». («Поиск-6» в книге не учтён)
  13. ↑ Jarry, J. L’aventure des bathyscaphes. — Le gerfaut, 2003. — С. 286. — ISBN 978-2-914622-22-6.
  14. ↑ U.S. y Symposium on Military Oceanography, Vol. 1 (англ.). — P. 94.. — «…was launched in January 1964».
  15. ↑ Создание отечественного обитаемого подводного аппарата…. — «По системе плавучести: 1. Батискафы … 2. Беспоплавковые аппараты».
  16. ↑ Батискаф «Консул» будет бороздить морские глубины в составе ВМФ России — ОРУЖИЕ РОССИИ, Каталог вооружения, военной и специальной техники (недоступная ссылка)
  17. ↑ Последнее погружение секретного батискафа | Камчатское время. kam.ru. Дата обращения: 15 февраля 2020.

Литература[править | править код]

  • Сахаров Б. Д. Аварии зарубежных глубоководных аппаратов. — Морской сборник № 6. — 1972. — 74 с.
  • Юрнев А. П. Необитаемые подводные аппараты. — М.: Воениздат, 1975.
  • Войтов Д. В. Подводные обитаемые аппараты. — М.: АСТ; Астрель, 2002. — 304, [32] с. — ISBN 5-17-005960-4; ISBN 5-271-03683-9. (в пер.)

Источник

Читайте также:  В какую сторону смещается равновесие при понижении давления