Какие потери давления в водопроводе
Содержание статьи
Подробно о давлении воды в трубах
Что это такое?
Чтобы водопровод исправно функционировал, службы водоканала постоянно поддерживают в нем определенное давление.
Напор измеряется физической величиной, равной силе воздействия воды на стенки трубопровода.
С помощью него от водоснабжения добиваются такого состояния, при котором он будет полноценно функционировать без риска наступления аварийных ситуаций:
- прорыва труб,
- запорной арматуры
- различного сантехнического оборудования.
Справка! В народе давление называют напором. И хоть эти понятия не тождественны, но суть их одинакова. Напор — это одно из многих его обозначений.
Обозначение напора в трубопроводе
Традиционно давление измеряют в Паскалях (Па), однако в сфере водоснабжения приняты и другие условные обозначения, — при этом в разных странах они отличаются:
- В России давление принято измерять в кгс/см². 100 кгс/см² тождествено 980,67 Па.
- В европейских странах применяют другую условную единицу — бар, который равен 10⁵ Па.
- В Англии и США используют обозначение psi, что соответствует 6,87 кПа.
Также давление измеряют в технических атмосферах и миллиметрах ртутного столба.
К сведению. Напор воды в 1 бар соответствует 1,02 атмосфер и равнозначно 10-ти метрам водного столба.
Соотношение величин разных обозначений приведено в следующей таблице:
Зависимость скорости от напора
В водоснабжении существует одна весьма важна взаимосвязь — зависимость давления от скорости воды в трубопроводе. Данное свойство подробно описано в физическом законе Бернулли. Подробно рассматривать его мы не будем, но укажем лишь на его суть — при увеличении скорости течения воды её давление в трубе снижается.
Так вышло, что не все сантехнические приборы рассчитаны на эксплуатацию при высоком напоре, в большинстве случаев они ограничены 5-6 атмосферами, — иначе повышенных износ и преждевременный выход из строя.
В центральных магистралях этот показатель значительно выше — может достигать 15 атмосфер, а потому для его снижения при подключении внутренних систем используют трубы меньшего диаметра.
Важно. При уменьшении сечения трубы, увеличивается скорость течения воды, но уменьшается ее давление. Поэтому при хронически низком напоре в квартире следует рассмотреть возможность увеличения диаметра внутреннего трубопровода.
Какая мощность в системе ГВС и ХВС?
Давление воды в многоэтажных домах, подключенных к центральной водопроводной сети, не постоянно.
Оно зависит от таких факторов, как этажность дома или время года, — так в летний сезон, особенно в многоэтажных домах становиться особо ощутима нехватка холодной воды, которая в это время идет на полив придомовых или приусадебных участков.
Муниципальные службы на практике стараются держать уровень на средних показателях в 3-4 атмосферы, правда, не всегда успешно. Минимальные показатели, при котором трубопровод дома может функционировать (и для ХВС, и для ГВС), составляют 0.3 бара на один этаж.
Величина напора горячего и холодного водоснабжения несколько отличается в пользу последнего (допускается разница до 25 %).
Объясняется это просто — холодная вода используется активней, поскольку нужна для функционирования канализации. Поэтому максимальные показатели для ХВС будут 6 атмосфер, а для ГВС — 4.5 атмосферы.
Какие показатели считаются нормой (по ГОСТу, СНиП)?
Водоснабжение регулируется следующими нормативным актами:
- СНиП2.04.02-84;
- СНиП2.04.02-85;
- ГОСТ 356-80;
- постановление Правительства РФ №354.
В соответствии с этими документами свободный напор в водопроводной сети на вводе в здание напрямую зависит от его этажности, — для одноэтажных построек этот показатель приравнивается к 1 атмосфере, что соответствует 10-ти метрам водонапора.
В многоэтажных домах это значение увеличивается на 4 метра на каждый этаж здания. В ночное время входящее давление может быть снижено до отметки в 3 метра.
Давление холодной воды должно находиться в пределах от 0.3 до 6 атмосфер, горячей — от 0.3 до 4,5.
Внимание. Согласно п. 2.28 СНиП 2.04.02-84, максимальное давление на вводе в сеть водоснабжения многоэтажного здания не может превышать 60-ти метров водяного столба (6 атмосфер). В противном случае следует устанавливать регуляторы давления или использовать зонирование водопроводной сети.
Как узнать мощность: пошаговая инструкция
Наиболее точным способом определить давление водопровода может стать встроенный манометр, — его устанавливают на входе во внутреннюю сеть сразу после запорной арматуры с фильтром.
Если такое оборудование не установлено, то можно изготовить переносной его аналог самостоятельно.
Для того понадобится:
- манометр до 6 атмосфер;
- резьбовой удлинитель;
- переходник (при необходимости);
- фумлента;
- разводной ключ.
Порядок работ:
- К манометру присоединяют резьбовой удлинитель, на который крепят переходник (при необходимости). Для точности производимых измерений с помощью фумленты достигают герметичности соединений.
- От с шланга душа отсоединяют лейку и прикручивают подготовленный ранее манометр, — соединение герметизируют фумлентой.
- Полностью открывают кран-буксу душа и снимают показания с манометра.
Справка. Во время испытаний, для точности снятия показаний, нельзя использовать другие сантехнические приборы: стиральную машину, раковину, унитаз и т.д.
Этот способ является наиболее точным, однако если требуется срочно узнать давление, а манометра под рукой нет, то можно применить другой, правда, менее точный метод: определение давления по расходу воды.
Понадобится:
- трехлитровая банка;
- секундомер.
Порядок проведения измерений:
- 3-литровую емкость подставляют под предварительно открытый на полную мощность кран.
- Одновременно с этим засекают время на секундомере и фиксируют: за сколько наполнится емкость.
- Полученное время сверяют с табличными данными и устанавливают давление.
Таблица: зависимость давления от расхода воды:
В видео наглядно показано, как можно измерить давление воды самостоятельно:
Как посчитать потерю?
Потеря давления в водопроводной сети происходит по следующим причинам (засоры и ржавчина труб не рассматриваются):
- Сопротивление трубы на прямых участках.
- Местное сопротивление (изгибы, клапана и т.п.).
Для удобства подсчетов существуют онлайн-калькуляторы, которые в считанные секунды позволяют выяснить уровень падения давления в трубопроводе. Также для решения этой задачи можно воспользоваться специальными табличными данными.
Расчет на прямых участках
Для расчета потерь нужно выяснить:
- расход воды;
- материал трубопровода, его диаметр и длину.
Выбрав нужное значение в таблице и выяснить величину снижения давления.
Табличные данные для полипропиленовых труб, — для металлических труб в вычисления нужно добавить поправочный коэффициент 1,5. Если длина трубы меньше 100 метров, то результат умножается на коэффициент длины. Так для металлической трубы с диаметром 50 мм, длиной 35 метров и расходом воды в 6.0 м³/ч получится следующий результат: 1,6*0,35*1,5=0,84 мвс.
На местах
Также потери происходят на поворотах и изгибах трубопровода, а также в местах нахождения запорной арматуры и фильтров.
Для расчетов существует специальная таблица, чтобы ей воспользоваться нужно узнать скорость потока воды в трубе, — вычисляется это следующим образом: расход нужно разделить на площадь сечения трубы.
В этой таблице данные указаны в сантиметрах водного столба, а потому очевидно, что потери давления на местных сопротивлениях не критичны и принципиального значения для малых сетей значения не имеют.
Как заглушить трубу с водой под давлением?
Поставить заглушку на трубу — дело не хитрое, если делать это без напора.
Но когда воду нельзя перекрыть, то многие подумают, что сделать это невозможно. Однако это не так.
Обычную заглушку поставить не получится, так как сильный напор не даст возможность даже наживить её на резьбу.
Но если воспользоваться вместо неё обычным водопроводным краном, то всё получится.
Метод заключается в том, чтобы кран, который будет заглушать трубу, перевести в открытый режим, — вода будет проходить сквозь него и тем самым даст возможность его наживить на резьбу трубы. Как только кран-заглушка будет наживлен и закручен на несколько витков, его можно перекрывать.
Перед работами нужно убедиться в том, что ничто не помешает выполнению работ, а также подготовить емкость для набора воды, тряпочную ветошь для уборки (чтоб не протопить соседей).
Этим методом можно воспользоваться даже в случае, если заглушаемая труба будет без резьбы, — тогда на кран-заглушку нужно надеть гибкий шланг, который бы налезал на трубу.
Кран, как и в первом случае, нужно полностью открыть, а шланг одевать на трубу — крепить его нужно на один-два хомута. После этого можно окончательно перекрывать воду.
Важно. Нельзя применять этот способ для заглушки трубопроводов горячей воды без полного перекрытия системы.
Заключение
В многоэтажных домах существует проблема не только с пониженным, но и с избыточным давлением, — это случается с квартирами на первых этажах дома, например, когда система не зонирована или при разовом нарушении режима водоснабжения коммунальными службами.
Поэтому навык самостоятельного замера мощности в водопроводе квартиры приобретает особую ценность, поскольку позволяет своевременно выявить превышение давления и дать знать службам водоканала соответствующий сигнал, что предотвратит аварийную ситуацию и преждевременный выход сантехнического оборудования.
А какова Ваша оценка данной статье?
Источник
.
, .
.
? ! , . . ! , , , .
, , , . , . , . , . , , , , , . , . , . , .
.
, . , , , «» (). , 1,5.
100 , .
, | |||||||||||
3/ | / | / | 14 | 19 | 25 | 32 | 38 | 50 | 63 | 75 | 89 |
0,5 | 8,33 | 0,14 | 8,9 | 2,1 | 0,6 | ||||||
0,8 | 13,33 | 0,22 | 20,2 | 4,7 | 1,3 | 0,4 | |||||
1 | 16,67 | 0,28 | 29,8 | 7 | 1,9 | 0,6 | |||||
1,5 | 25 | 0,42 | 14,2 | 3,9 | 1,2 | 0,5 | |||||
2 | 33,33 | 0,56 | 23,5 | 6,4 | 2 | 0,9 | |||||
2,5 | 41,67 | 0,69 | 9,4 | 2,9 | 1,3 | 0,4 | |||||
30 | 500 | 8,33 | 13 | 4 | 1,8 | 0,5 | 0,2 | ||||
3,5 | 58,33 | 0,97 | 17 | 5,3 | 2,3 | 0,6 | 0,2 | ||||
4 | 66,67 | 1,11 | 21,5 | 6,6 | 2,9 | 0,8 | 0,3 | 0,1 | |||
4,5 | 75 | 1,25 | 8,2 | 3,6 | 1 | 0,3 | 0,1 | ||||
5 | 83,33 | 1,39 | 9,8 | 4,3 | 1,2 | 0,4 | 0,2 | ||||
5,5 | 91,67 | 1,53 | 11,6 | 5,1 | 1,4 | 0,5 | 0,2 | ||||
6 | 100 | 1,67 | 13,5 | 6 | 1,6 | 0,5 | 0,2 | ||||
6,5 | 108,3 | 1,81 | 15,5 | 6,9 | 1,9 | 0,6 | 0,3 | ||||
7 | 116,7 | 1,94 | 17,7 | 7,8 | 2,1 | 0,7 | 0,3 | ||||
8 | 133,3 | 2,22 | 22,4 | 9,9 | 2,7 | 0,9 | 0,4 | 0,2 |
: , 50 7 3/ 2,1 3,15 (2,1*1,5) . , .
.
, . , , . : 90 , .
.
, / | 90 | ||
0,4 | 1,2 | 0,11 | 31 |
0,5 | 1,9 | 0,18 | 32 |
0,6 | 2,8 | 0,25 | 32 |
0,7 | 3,9 | 0,34 | 32 |
0,8 | 4,8 | 0,45 | 33 |
0,9 | 6,2 | 0,57 | 34 |
1 | 7,6 | 0,7 | 35 |
1,5 | 17 | 1,6 | 40 |
2 | 31 | 2,8 | 48 |
2,5 | 48 | 4,4 | 58 |
3 | 70 | 6,3 | 71 |
3,5 | 93 | 8,5 | 85 |
4 | 120 | 11 | 100 |
4,5 | 160 | 14 | 120 |
5 | 190 | 18 | 140 |
v — Q — ( 3/) S — ( 2).
.. 50 (π*R2=3,14*(50/2)2=1962,5 2; S=1962,5/1 000 000=0,0019625 2) 7 3/ (Q=7/3600=0,00194 3/)
v=Q/S=0,00194/0,0019625=0,989 /
: 90 — 7,6 , — 0,7, — 35.
, . — , . , .
, , . !
Источник
Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе
В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.
Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.
Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.
Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.
Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.
h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с2
А теперь поговорим о коэффициенте гидравлического трения.
Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.
Напомню эту формулу (она применима только к круглым трубам):
V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.
Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:
Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].
d-внутренний диаметр трубы, то есть диаметр потока жидкости.
Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.
В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.
Вообще в целом, эти формулы показывают и доказывают, что при увеличении скорости или увеличении расхода, всегда увеличивается сопротивление движению потока жидкости, то есть увеличиваются потери напора. Причем увеличиваются не пропорционально, а квадратично. Это говорит о том, что единица увеличения расхода не соответствует затратам на потерю напора. То есть иметь большую скорость потока жидкости в трубе экономически не целесообразно. Поэтому бывает дешевле увеличить диаметр потока. В других статьях обязательно опишу, как посчитать, какой диаметр нам необходим.
Таблица: (Эквивалент шероховатости)
Кому интересно узнать (Эквивалент шероховатости ) для металлопластика, полипропилена и сшитого полиэтилена, то это соответствует и относится к пластмассам. То есть в таблице характеристика будет: Пластмассовые (полиэтилен, винипласт).
Так же хочу обратить внимание, на то, что со временем, на внутренних станках труб, образуется налет, что увеличивает шероховатость труб. Так что имейте ввиду что со временем потери напора только увеличиваются.
Таблица: (Кинематическая вязкость воды)
График:
Как видно из графика, что при повышении температуры кинематическая вязкость уменьшается, а это значит, что и сопротивление движению воды уменьшается. Это значит, что при потоке горячей воды, «потери напора» будут меньше чем при потоке холодной воды. Кто живет в многоквартирных домах, если обратит внимание, то скорость и напор горячей воды всегда выше чем напор холодной воды. Есть исключения, но в большинстве случаев это так. Теперь вы понимаете, почему это так.
А теперь давайте решим задачу:
Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м3/с, длина трубы L=900м, температура t=16°С.
Дано:
D=500мм=0.5м
Q=2 м3/с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?
Видео:
Купить программу
Решение: Для начала найдем скорость потока в трубе по формуле:
V=Q/ω
Сдесь ω — площадь сечения потока. Находится по формуле:
ω=πR2=π(D2/4)=3.14*(0,52/4)=0,19625 м2
V=Q/ω=2/0,19625=10,19 м/с
Далее находим число Рейнольдса по формуле:
Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241
ν=1,16*10-6=0,00000116. Взято из таблицы. Для воды при температуре 16°С.
Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.
Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.
λ=0,11(Δэ/D)0,25=0,11*(0,00025/0,5)0,25=0,01645
Далее завершаем формулой:
h=λ*(L*V2)/(D*2*g)=0,01645*(900*10,192)/(0,5*2*9,81)=156,7 м.
Ответ: 156,7 м. = 1,567 МПа.
Также хочу обратить внимание на то, что мы в задаче рассматривали трубу которая на всей своей длине имеет горизонтальное положение.
Давайте рассмотрим пример, когда труба идет вверх под определенным углом.
В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.
Мы рассмотрели потерю напора по длине трубопровода, также существуют местные сопротивления в виде заужения и поворотов, которые тоже влияют на потерю напора. О них будет описано в других моих статьях. И я обязательно приготовлю статью о том как подобрать насос по напору, чтобы удовлетворить требования расхода жидкости, в зависимости от потерь напора. Если что-то не понятно пишите в комментарии, обязательно отвечу!
Чтобы в ручную не считать всю математику я приготовил специальную программу:
Скачать калькулятор расчетов гидравлического сопротивления.
Следующая статья: Местные гидравлические сопротивления
Все о дачном доме
Водоснабжение
Обучающий курс. Автоматическое водоснабжение своими руками. Для чайников.
Неисправности скважинной автоматической системы водоснабжения.
Водозаборные скважины
Ремонт скважины? Узнайте нужен ли он!
Где бурить скважину — снаружи или внутри?
В каких случаях очистка скважины не имеет смысла
Почему в скважинах застревают насосы и как это предотвратить
Прокладка трубопровода от скважины до дома
100% Защита насоса от сухого хода
Отопление
Обучающий курс. Водяной теплый пол своими руками. Для чайников.
Теплый водяной пол под ламинат
Обучающий Видеокурс: По ГИДРАВЛИЧЕСКИМ И ТЕПЛОВЫМ РАСЧЕТАМ
Водяное отопление
Виды отопления
Отопительные системы
Отопительное оборудование, отопительные батареи
Система теплых полов
Личная статья теплых полов
Принцип работы и схема работы теплого водяного пола
Проектирование и монтаж теплого пола
Водяной теплый пол своими руками
Основные материалы для теплого водяного пола
Технология монтажа водяного теплого пола
Система теплых полов
Шаг укладки и способы укладки теплого пола
Типы водных теплых полов
Все о теплоносителях
Антифриз или вода?
Виды теплоносителей (антифризов для отопления)
Антифриз для отопления
Как правильно разбавлять антифриз для системы отопления?
Обнаружение и последствия протечек теплоносителей
Как правильно выбрать отопительный котел
Тепловой насос
Особенности теплового насоса
Тепловой насос принцип работы
Про радиаторы отопления
Способы подключения радиаторов. Свойства и параметры.
Как рассчитать колличество секций радиатора?
Рассчет тепловой мощности и количество радиаторов
Виды радиаторов и их особенности
Автономное водоснабжение
Схема автономного водоснабжения
Устройство скважины Очистка скважины своими руками
Опыт сантехника
Подключение стиральной машины
Полезные материалы
Редуктор давления воды
Гидроаккумулятор. Принцип работы, назначение и настройка.
Автоматический клапан для выпуска воздуха
Балансировочный клапан
Перепускной клапан
Трехходовой клапан
Трехходовой клапан с сервоприводом ESBE
Терморегулятор на радиатор
Сервопривод коллекторный. Выбор и правила подключения.
Виды водяных фильтров. Как подобрать водяной фильтр для воды.
Обратный осмос
Фильтр грязевик
Обратный клапан
Предохранительный клапан
Смесительный узел. Принцип работы. Назначение и расчеты.
Расчет смесительного узла CombiMix
Гидрострелка. Принцип работы, назначение и расчеты.
Бойлер косвенного нагрева накопительный. Принцип работы.
Расчет пластинчатого теплообменника
Рекомендации по подбору ПТО при проектировании объектов теплоснабжения
О загрязнение теплообменников
Водонагреватель косвенного нагрева воды
Магнитный фильтр — защита от накипи
Инфракрасные обогреватели
Радиаторы. Свойства и виды отопительных приборов.
Виды труб и их свойства
Незаменимые инструменты сантехника
Интересные рассказы
Страшная сказка о черном монтажнике
Технологии очистки воды
Как выбрать фильтр для очистки воды
Поразмышляем о канализации
Очистные сооружения сельского дома
Советы сантехнику
Как оценить качество Вашей отопительной и водопроводной системы?
Профрекомендации
Как подобрать насос для скважины
Как правильно оборудовать скважину
Водопровод на огород
Как выбрать водонагреватель
Пример установки оборудования для скважины
Рекомендации по комплектации и монтажу погружных насосов
Какой тип гидроаккумулятора водоснабжения выбрать?
Круговорот воды в квартире
фановая труба
Удаление воздуха из системы отопления
Гидравлика и теплотехника
Введение
Что такое гидравлический расчет?
Физические свойства жидкостей
Гидростатическое давление
Поговорим о сопротивлениях прохождении жидкости в трубах
Режимы движения жидкости (ламинарный и турбулентный)
Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе
Местные гидравлические сопротивления
Профессиональный расчет диаметра трубы по формулам для водоснабжения
Как подобрать насос по техническим параметрам
Профессиональный расчет систем водяного отопления. Расчет теплопотерь водяного контура.
Гидравлические потери в гофрированной трубе
Теплотехника. Речь автора. Вступление
Процессы теплообмена
Тплопроводность материалов и потеря тепла через стену
Как мы теряем тепло обычным воздухом?
Законы теплового излучения. Лучистое тепло.
Законы теплового излучения. Страница 2.
Потеря тепла через окно
Факторы теплопотерь дома
Начни свое дело в сфере систем водоснабжения и отопления
Вопрос по расчету гидравлики
Конструктор водяного отопления
Диаметр трубопроводов, скорость течения и расход теплоносителя.
Вычисляем диаметр трубы для отопления
Расчет потерь тепла через радиатор
Мощность радиатора отопления
Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704
Расчет теплопотерь через ограждающие конструкции
Найти теплопотери через чердак и узнать температуру на чердаке
Подбираем циркуляционный насос для отопления
Перенос тепловой энергии по трубам
Расчет гидравлического сопротивления в системе отопления
Распределение расхода и тепла по трубам. Абсолютные схемы.
Расчет сложной попутной системы отопления
Расчет отопления. Популярный миф
Расчет отопления одной ветки по длине и КМС
Расчет отопления. Подбор насоса и диаметров
Расчет отопления. Двухтрубная тупиковая
Расчет отопления. Однотрубная последовательная
Расчет отопления. Двухтрубная попутная
Расчет естественной циркуляции. Гравитационный напор
Расчет гидравлического удара
Сколько выделяется тепла трубами?
Собираем котельную от А до Я…
Система отопления расчет
Онлайн калькулятор Программа расчет Теплопотерь помещения
Гидравлический расчет трубопроводов
История и возможности программы — введение
Как в программе сделать расчет одной ветки
Расчет угла КМС отвода
Расчет КМС систем отопления и водоснабжения
Разветвление трубопровода — расчет
Как в программе рассчитать однотрубную систему отопления
Как в программе рассчитать двухтрубную систему отопления
Как в программе рассчитать расход радиатора в системе отопления
Перерасчет мощности радиаторов
Как в программе рассчитать двухтрубную попутную систему отопления. Петля Тихельмана
Расчет гидравлического разделителя (гидрострелка) в программе
Расчет комбинированной цепи систем отопления и водоснабжения
Расчет теплопотерь через ограждающие конструкции
Гидравлические потери в гофрированной трубе
Гидравлический расчет в трехмерном пространстве
Интерфейс и управление в программе
Три закона/фактора по подбору диаметров и насосов
Расчет водоснабжения с самовсасывающим насосом
Расчет диаметров от центрального водоснабжения
Расчет водоснабжения частного дома
Расчет гидрострелки и коллектора
Расчет Гидрострелки со множеством соединений
Расчет двух котлов в системе отопления
Расчет однотрубной системы отопления
Расчет двухтрубной системы отопления
Расчет петли Тихельмана
Расчет двухтрубной лучевой разводки
Расчет двухтрубной вертикальной системы отопления
Расчет однотрубной вертикальной системы отопления
Расчет теплого водяного пола и смесительных узлов
Рециркуляция горячего водоснабжения
Балансировочная настройка радиаторов
Расчет отопления с естественной циркуляцией
Лучевая разводка системы отопления
Петля Тихельмана — двухтрубная попутная
Гидравлический расчет двух котлов с гидрострелкой
Система отопления (не Стандарт) — Другая схема обвязки
Гидравлический расчет многопатрубковых гидрострелок
Радиаторная смешенная система отопления — попутная с тупиков
Терморегуляция систем отопления
Разветвление трубопровода — расчет
Гидравлический расчет по разветвлению трубопровода
Расчет насоса для водоснабжения
Расчет контуров теплого водяного пола
Гидравлический расчет отопления. Однотрубная система
Гидравлический расчет отопления. Двухтрубная тупиковая
Бюджетный вариант однотрубной системы отопления частного дома
Расчет дроссельной шайбы
Что такое КМС?
Расчет гравитационной системы отопления
Конструктор технических проблем
Удлинение трубы
Требования СНиП ГОСТы
Требования к котельному помещению
Вопрос слесарю-сантехнику
Полезные ссылки сантехнику
—
Сантехник — ОТВЕЧАЕТ!!!
Жилищно коммунальные проблемы
Монтажные работы: Проекты, схемы, чертежи, фото, описание.
Если надоело читать, можно посмотреть полезный видео сборник по системам водоснабжения и отопления
Источник