Какие потери давления на трубопроводе

.

, .

     .

? ! , . . ! , , , .

  , , , . , . , . , . , , , , , . , . , . , .

.

, . , , , «» (). , 1,5.

100 , .

,

3/

/

/

14

19

25

32

38

50

63

75

89

0,5

8,33

0,14

8,9

2,1

0,6

0,8

13,33

0,22

20,2

4,7

1,3

0,4

1

16,67

0,28

29,8

7

1,9

0,6

1,5

25

0,42

14,2

3,9

1,2

0,5

2

33,33

0,56

23,5

6,4

2

0,9

2,5

41,67

0,69

9,4

2,9

1,3

0,4

30

500

8,33

13

4

1,8

0,5

0,2

3,5

58,33

0,97

17

5,3

2,3

0,6

0,2

4

66,67

1,11

21,5

6,6

2,9

0,8

0,3

0,1

4,5

75

1,25

8,2

3,6

1

0,3

0,1

5

83,33

1,39

9,8

4,3

1,2

0,4

0,2

5,5

91,67

1,53

11,6

5,1

1,4

0,5

0,2

6

100

1,67

13,5

6

1,6

0,5

0,2

6,5

108,3

1,81

15,5

6,9

1,9

0,6

0,3

7

116,7

1,94

17,7

7,8

2,1

0,7

0,3

8

133,3

2,22

22,4

9,9

2,7

0,9

0,4

0,2

: , 50 7 3/ 2,1 3,15 (2,1*1,5) . , .

.

, . , , . : 90 , .

.

, /

90

Какие потери давления на трубопроводе

Какие потери давления на трубопроводе

Какие потери давления на трубопроводе

0,4

1,2

0,11

31

0,5

1,9

0,18

32

0,6

2,8

0,25

32

0,7

3,9

0,34

32

0,8

4,8

0,45

33

0,9

6,2

0,57

34

1

7,6

0,7

35

1,5

17

1,6

40

2

31

2,8

48

2,5

48

4,4

58

3

70

6,3

71

3,5

93

8,5

85

4

120

11

100

4,5

160

14

120

5

190

18

140

v — Q — ( 3/) S – ( 2).

.. 50 (π*R2=3,14*(50/2)2=1962,5 2; S=1962,5/1 000 000=0,0019625 2) 7 3/ (Q=7/3600=0,00194 3/)
v=Q/S=0,00194/0,0019625=0,989 /

: 90 – 7,6 , – 0,7, – 35.

, . — , . , .

, , . !

Источник

Что такое потери напора?

Третья статья в цикле статей по теоретическим основам гидравлики посвящена определению потерь напора.

Как рассказывалось ранее, при своем движении жидкость испытывает сопротивление, что выражается затратами ее энергии, т.е. затратами ее напора, что называют потерями напора.

Потери напора принципиально
делятся на два типа:

Какие потери давления на трубопроводеПотери напора: местные (обведены кружком) и по длине
  1. Местные (на рисунке обведены красным)
  2. Потери по длине (на рисунке подчеркнуты зеленым)

Местные потери конкретно на данном рисунке: поворот, задвижка (условное обозначение по ГОСТ – «бантик»), еще один поворот и внезапное (т.е. не плавное) расширение.

Потери по длине здесь – это
потери на прямолинейных участках l1, l2, l3, l4.

Какие потери давления на трубопроводеМестное сопротивление — внезапное сужение [1]

1. Местные потери напора (говорят также потери напора на местные
сопротивления) – это потери напора, которые происходят в основном из-за
вихреобразования в конкретных местах трубопровода (потому и «местные»). Любое
препятствие на пути движения потока жидкости является местным сопротивление.
Чем сильнее деформируется поток, тем больше будет потеря напора. Например, на
рисунке ниже показано внезапное сужение трубопровода. Хорошо видны 4 вихревые
зоны до и после сужения.

(говорят также потери напора на местные сопротивления) – это потери напора, которые происходят в основном из-за вихреобразования в конкретных местах трубопровода (потому и «местные»). Любое препятствие на пути движения потока жидкости является местным сопротивление. Чем сильнее деформируется поток, тем больше будет потеря напора. Например, на рисунке ниже показано внезапное сужение трубопровода. Хорошо видны 4 вихревые зоны до и после сужения.

Местную потерю напора можно определить, зная коэффициент сопротивления для данного сопротивления (обозначается буквой дзэта ζ, не имеет размерности) и среднюю скорость потока в сопротивлении V.

hм = ζ · V2 / 2g

(g – ускорение свободного падения, g = 9,81 м/с2 ,
для быстрых подсчетов можно округлить до 10 м/с2)

Пример. Определить потерю напора
в вентиле, установленном на трубе внутренним диаметром d = 51 мм, при расходе Q = 2 л/с.

Сначала по уравнению
неразрывности (ссылка на статью 2) определим среднюю скорость движения
жидкости.

V = Q / ω = 4 · Q / 3,14 · d² = 4 · 0,002 / 3,14 · 0,051² = 0,98 м/с

Теперь необходим коэффициент
сопротивления вентиля. Такие данные берут из гидравлических справочников или у
производителей конкретной арматуры. По справочным данным находим, что
коэффициент местного сопротивления вентиля равен 6.

Тогда потеря напора на вентиле: hвент = ζ · V²/ 2 · g = 6
· 0,98² / 2 · 10 = 0,29 м.

Какие потери давления на трубопроводеИллюстрация местных потерь напора

При расчете трубопроводных систем
(внутренний водопровод здания, наружная водопроводная сеть и т.п.) обычно
высчитывают не все сопротивления (так как их может быть очень много), а только
самые существенные, создающие наибольшие сопротивления: например, счетчик воды.
Потеря напора на остальных местных сопротивлениях учитывается коэффициентом, на
который умножается значение потерь напора по длине (1,05 – 1,15 для наружных
сетей, 1,1 – 1,3 для внутренних сетей здания).

2. Потери напора по длине – потери напора на участках трубопровода.
Возникают из-за работы сил трения. (сила трения возникает между слоями
движущейся жидкости). Величина потерь напора, также, как и местных потерь,
напрямую зависит от скорости движения жидкости. При достаточно высокой скорости
усиливается влияние шероховатости стенок трубы.

Какие потери давления на трубопроводеПотерю напора по длине можно увидеть по разнице в уровнях воды между двумя пьезометрами

Точное определение потерь напора по длине является довольно сложной
задачей, для этого необходимо устанавливать режим движения жидкости (бывает ламинарный и турбулентный),
подбирать расчетную формулу для коэффициента гидравлического трения в
зависимости от числа Рейнольдса Re,
характеризующего степень турбулизации потока. Это изучается студентами в рамках
курса механики жидкости.

Читайте также:  Какое давление в шинах паджеро спорт

При этом для быстрого расчета потерь напора были составлены специальные таблицы для инженеров, позволяющие, зная материал трубы и ее диаметр, а также расход воды, быстро определить так называемые удельные потери напора (сколько напора теряется на 1 м трубы). Эта величина называется 1000i, значение 1000i = 254 означает, что поток, проходя 1 м такой трубы теряет 254 мм (миллиметра) напора, т.е. 0,254 метра. Это значение также называется «гидравлический уклон», и это нельзя путать с геодезическим, т.е. просто с физическим уклоном (наклоном) самой трубы. Для расчета стальных труб используют таблицы Шевелева

Фрагмент этих таблиц представлен
на рисунке ниже.

Какие потери давления на трубопроводекак пользоваться таблицами Шевелева

Например, из данного фрагмента видно, что если вода с расходом 1,50 л/с пойдет по трубе диаметром 50 мм, то скорость в этой трубе будет 0,47 м/с, а 1000i составит 9,69 мм на метр (на каждом метре трубы теряется 9,69 миллиметров напора).

Чтобы определить, сколько метров
напора будет потеряно на всем участке – нужно перемножить 1000i с длиной
участка. Чтобы ответ получился в метрах, 1000i делят на 1000.

Итак, потери напора по длине: hl= 1000i·l / 1000 = i·l

Если наш участок трубы имеет
длину, скажем, 25 метров, то потеря напора на нем:

hl=
9,69*25/1000 = 0,24 м.

Учтем и местные сопротивления,
тогда полная потеря напора на данном участке:

­hl = 0,24*1,3 = 0,31 м.

Таблицы были переведены в электронный вид в виде программы, созданной студентом Любчуком Ю.Е. Загрузить программу можно с нашего сайта. С помощью этой программы, можно легко посчитать потери напора в трубах из различных материалов. В следующей статье подробно опишем, как пользоваться данной программой на задаче из жизни.

Источник

Самостоятельный гидравлический расчет трубопровода

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Какие потери давления на трубопроводеМноголетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Какие потери давления на трубопроводеУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Читайте также:  Какая ягода от давления

Какие потери давления на трубопроводе

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
  • переходный режим (2300<Re<4000), который характеризуется нестабильной структурой потока, когда отдельные слои жидкости перемешиваются;
  • турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и  их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока  приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

Какие потери давления на трубопроводе

 При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Какие потери давления на трубопроводе

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Какие потери давления на трубопроводе

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

Какие потери давления на трубопроводе

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы: 

Какие потери давления на трубопроводеПотери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:

Какие потери давления на трубопроводе

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Какие потери давления на трубопроводе

Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м3/час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м3/час = 80·1/3600 = 0,022 м3/с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

Читайте также:  Каким станет давление если перегородку убрать

давление в аппарате Р = 2,2 бар = 2,2·105 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d2) = ((4·0,022) / (3,14·[0,024]2)) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w2/(2·g)]) = (0,028·32) / (0,024·[48,66]2) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

hп = H — [(p2-p1)/(ρ·g)] — Hг = 20 — [(2,2-1)·105)/(1000·9,81)] — 0 = 7,76 м

Потери напора на местные сопротивления определяется как разность:

7,76 — 0,31=7,45 м

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10-5.

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10-5.

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w2/(2·g) = 2,02/(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

hп = H — (p2-p1)/(ρ·g) — = 8 — ((1-1)·105)/(1000·9,81) — 0 = 8 м

Полученное значение потери напора носителя на трение составят:

8-1,04 = 6,96 м

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с,  плотность воды – 1000 кг/м3):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000

Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):

λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м3/час. Длина прямого трубопровода l = 26 м, материал — сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м3/час = 0,005 м3/с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м3, μ = 653,3·10-6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Δp=0,01 МПа;

ΔH=1,2 м.

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d5 = (8·26·0.005²)/(9,81·3,14²)· λ/d5 = 5,376·10-5·λ/d5

Выразим диаметр:

d5 = (5,376·10-5·λ)/∆H = (5,376·10-5·0,026)/1,2 = 1,16·10-6

d = 5√1,16·10-6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м3/час и Q2 = 34 м3/час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Q1 = 18 м3/час;

Q2 = 34 м3/час.

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

d = √(4·Q)/(π·W)

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м3/час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м3/час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м3/час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м3/час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м3/час. Определите режим течения потока воды в трубе.

Дано:

диаметр трубы d = 0,25 м;

расход Q = 100 м3/час;

μ = 653,3·10-6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м3 (по таблице при Т = 40°С).

Решение задачи: 

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10-6) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Источник