Какие из условий ведут к увеличению осмотического давления

Осмотическое давление

Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничностью. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.

Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для внутривенного введения, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3-10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.

Уравнение Вант-Гоффа[править | править код]

Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на уравнение состояния для идеального газа:

,

где i — изотонический коэффициент раствора; C — молярная концентрация раствора, выраженная через комбинацию основных единиц СИ, то есть, в моль/м³; R — универсальная газовая постоянная; T — термодинамическая температура раствора.

Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.

Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03-0,04 атм). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где πОНК больше. При гнойных процессах πОНК в очаге воспаления возрастает в 2-3 раза, так как увеличивается число частиц из-за разрушения белков.

В организме осмотическое давление должно быть постоянным (около 7,7 атм). Поэтому для внутривенного введения обычно используются изотонические растворы (растворы, осмотическое давление которых равно πплазмы ≈ 7,7 атм. (0,9 % NaCl — физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых π больше, чем πплазмы, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4∙10H2O, MgSO4∙7H2O).

Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).

Уравнение Галлера[править | править код]

Экспериментально определенное значение осмотического давления высокомолекулярных соединений больше теоретического, определяемого по формуле Вант-Гоффа . Это явление находит объяснение в относительной независимости теплового движения каждой части макромолекулы и описывается уравнением Галлера:[1]

Здесь: — концентрация раствора высокомолекулярного соединения (г/л), — молярная масса (г/моль), — коэффициент, учитывающий гибкость и формулу макромолекулы в растворе, R — универсальная газовая постоянная, T — термодинамическая температура раствора.

При небольших значениях концентрации формула Галлера переходит в формулу Вант-Гоффа.

Обоснование формулы Вант-Гоффа с термодинамических позиций[править | править код]

В растворе свободная энергия , где — молярная часть раствора, — его мольный объем. Появление члена эквивалентно внесению в свободную энергию внешнего давления. Для чистого растворителя . При равновесии для растворителя равно нулю. Таким образом,

откуда:

то есть получена формула Вант-Гоффа ().

При её выведении высчитано, что — малая величина. Это позволяет разложить в ряд и далее применить соотношение Произведение в разбавленных растворах практически равно объему раствора.

Осмотическое давление коллоидных растворов[править | править код]

Для возникновения осмотического давления должны выполняться два условия:

  • наличие полупроницаемой перегородки (мембраны);
  • наличие по обе стороны мембраны растворов с разной концентрацией.

Мембрана проницаема для частичек (молекул) определенного размера, поэтому она может, например, выборочно пропускать сквозь свои поры молекулы воды, не пропуская молекулы этилового спирта. Для газовой смеси — водорода и азота — роль полупроницаемой мембраны может выполнять тонкая палладиевая фольга, сквозь которую свободно диффундирует водород, тогда как азот она практически не пропускает. с помощью такой мембраны можно разделять смесь водорода и азота на отдельные компоненты.

Простыми и давно известными примерами мембран, которые проницаемы для воды и непроницаемы для многих других растворенных в воде веществ, является кожа, пергамент, и другие ткани животного и растительного происхождения.

Пфеффер с помощью осмометра, в котором в качестве полупроницаемой мембраны использовался пористый фарфор, обработанный Cu2Fe(CN)6, исследовал осмотическое давление водных растворов тростникового сахара. На основе этих измерений Вант-Гофф в 1885 году предложил эмпирическое уравнение, которому подчиняется осмотическое давление разведенных растворов:

,

где c=n/V — концентрация растворенного вещества, моль/м3.

Это уравнение по форме совпадает с законом Бойля — Мариотта для идеальных газов. Поэтому осмотическое давление разведенных растворов можно определить как давление, которое бы создавала то же самое количество молекул растворенного вещества, если бы оно было в виде идеального газа и занимало при данной температуре объем, равный объему раствора.

Читайте также:  Карась и при каком давление ловит его

Уравнение Вант-Гоффа можно несколько преобразовать, подставляя вместо концентрации :

,

где — массовая концентрация растворенного вещества; — его молекулярная масса.

В таком виде уравнение Вант-Гоффа широко применяется для определения молярной массы растворенного вещества. Осмотический метод применяют зачастую для определения молярных масс высокомолекулярных соединений (белков, полисахаридов и других). Для этого достаточно измерить осмотическое давление раствора с известной концентрацией.

Если вещество диссоциирует в данном растворе, то осмотическое давление будет большим, чем рассчитанное и нужно вводить изотонический коэффициент:

Уравнение Вант-Гоффа справедливо только для разведенных растворов, которые подчиняются закону Рауля. При повышенных концентрациях растворов в последнем уравнении должно быть заменено на активность или фугитивность

Роль осмоса в биологических системах[править | править код]

Явление осмоса и осмотическое давление играют огромную роль в биологических системах, которые содержат полупроницаемые перегородки в виде разных тканей, в том числе оболочек клеток. Постоянный осмос воды внутрь клеток создает избыточное гидростатическое давление, которое обеспечивает прочность и упругость тканей, которое называют тургором.

Если клетку, например, эритроцит, поместить в дистиллированную воду (или очень разбавленный раствор соли), то вода будет проникать внутрь клетки и клетка будет набухать. Процесс набухания может привести к разрыву оболочки эритроцита, если произойдет так называемый гемолиз.

Обратное явление наблюдается, если вместить клетку в концентрированный раствор соли: сквозь мембрану вода из клеток диффундирует в раствор соли. При этом протоплазма сбрасывает оболочку, клетка сморщивается, теряет тургор и стойкость, свойственные ей в нормальном состоянии. Это явление называется плазмолизом. При помещении плазмолизованных клеток в воду протоплазма опять набухает и в клетке восстанавливается тургор. Происходит при этом так называемый деплазмолиз: это можно наблюдать, помещая цветы, которые начинают вянуть, в воду. И только в изотоническом растворе, который имеет одинаковую концентрацию (вернее, одинаковое осмотическое давление с содержанием клетки), объем клетки остается неизменным.

Процессы усвоения еды, обмена веществ тесно связаны с разной проницаемостью тканей для воды и других растворенных в ней веществ.

Осмотическое давление отыгрывает роль механизма, который подает нутриенты клеткам; у высоких деревьев последние поднимаются на высоту нескольких десятков метров, что соответствует осмотическому давлению в несколько десятков атмосфер. Типовые клетки, сформировавшиеся из протоплазматических мешков, наполненных водными растворами разных веществ (клеточный сок), имеют определенное значение для давления, величина которого измеряется в пределах 0,4-2 МПа.

См. также[править | править код]

  • Осмос
  • Обратный осмос
  • Осморегуляция
  • Диффузионное давление
  • Коллигативные свойства растворов

Примечания[править | править код]

  1. ↑ Ершов Ю. А., Попков В. А., Берлянд А. С. Общая химия. Биофизическая химия. Химия биогенных элементов. — М., Высшая школа, 1993. — ISBN 5-06-002170-X. — с. 540-541

Литература[править | править код]

  • Детлаф А. А., Яворский Б. М. Курс физики: Учебное пособие для вузов — М.: Высшая школа, 1989. — С. 113.
  • Яцимирський В. К. Фізична хімія. (На украинском)

Источник

Большая Энциклопедия Нефти и Газа

Повышение — осмотическое давление

Cтраница 1

Повышение осмотического давления введением больших количеств солей приводит к перераспределению воды. Она скапливается в тех тканях, где откладывается избыток солей, — возникают отеки.  [1]

Это вызывает повышение осмотического давления водянистой влаги по отношению к плазме крови. Вследствие увеличения осмотического градиента между влагой и кровью ток воды из крови идет в камерную влагу.  [2]

Поляризация приводит к повышению осмотического давления, что при постоянном рабочем давлении снижает выход фильтрата.  [3]

Однако присутствие в среде NaCl обусловливает повышение осмотического давления раствора, что приводит к изменению внутриклеточного давления микроорганизмов. Известно, что повышение осмотического давления до определенного предела не только не снижает жизнедеятельности клетки, но даже может стимулировать некоторые биохимические процессы.  [5]

Увеличение концентрации растворенных веществ приводит к повышению осмотического давления раствора, что снижает эффективную движущую силу процесса, а также, как правило, возрастанию вязкости. Все это вызывает снижение проницаемости. С увеличением концентрации уменьшается толщина слоя связанной воды на поверхности и в порах мембраны, ослабевают силы взаимодействия между ионами и молекулами воды в растворах неорганических веществ [159], что приводит к снижению селективности.  [6]

Фактором, содействующим лимфообразованию, может быть повышение осмотического давления тканевой жидкости и самой лимфы. Этот фактор приобретает большое значение, если в тканевую жидкость и лимфу переходит значительное количество продуктов диссимиляции. Большинство продуктов обмена имеет относительно низкую молекулярную массу и потому повышает осмотическое давление тканевой жидкости, что в свою очередь обусловливает поступление в ткани воды из крови и усиливает лимфообразование.  [7]

Консервирование с помощью поваренной соли или сахара основано на повышении осмотического давления, препятствующего жизнедеятельности микроорганизмов. Влага, содержащаяся в клетках микробов, выходит из клетки в концентрированный раствор, окружающий клетку, и благодаря этому жизненные процессы в клетке прекращаются. Такие организмы называются осмофильными.  [8]

Как известно, повышение водоудерживающеи способности клеток обусловливается в основном двумя факторами: повышением осмотического давления клеточного сока и ростом имбибиционной силы клеточных коллоидов. Как выяснилось из опытов Е.В.Лебединцевой ( 1919), в повышении водоудерживающеи способности главную роль играют вещества, влияющие на осмотические свойства клеточного сока. К числу таких веществ относятся микроэлементы, которые повышают содержание осмотически активных Сахаров в растениях, что является одной из причин повышения водоудерживающих сил растения.  [9]

Шведский ученый Сванте Аррениус, изучая свойства растворов, пришел к заключению, что повышение осмотического давления, понижение температуры замерзания и повышение температуры кипения водных растворов электролитов и их способность проводить электрический ток обусловлены одной и той же причиной.  [10]

Такая тенденция соответствует снижению межмолекулярного взаимодействия полимер — растворитель, а следовательно, приводит к повышению осмотического давления. КТ) — 2, причем это соотношение справедливо для различных растворителей, но коэффициент гро-порциональности зависит от концентрации.  [11]

При недостаточном потреблении воды, сильном потоотделении или после приема большого количества соли крайне чувствительные осморе-цепторы в гипоталамусе регистрируют повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ. С кровотоком гормон достигает почек, где повышает водопроницаемость дистальных извитых канальцев и собирательных трубочек. Это достигается благодаря увеличению числа водных каналов в мембранах их клеток. Водные каналы по аналогии с ионными представляют собой белки-переносчики. Они синтезируются внутри клетки, запасаются в мембранах мелких пузырьков комплекса Гольджи и накапливаются в цитоплазме.  [13]

Читайте также:  Какое давление фреона в холодильнике индезит

Поглощение пленкой влаги зависит от осмотического давления воздействующего раствора: при увеличении концентрации раствора, а следовательно, при повышении осмотического давления адсорбция влаги пленкой уменьшается. Поглощение влаги сопровождается увеличением объема пленки; при усиленном притоке влаги может нарушиться адгезия, что приведет к вспучиванию покрытия и его отслаиванию.  [14]

В качестве примеров можно указать на использование мочевины под такие растения, как хлопчатник кукуруза, которые на ранних стадиях своего развития весьма чувствительны к повышению осмотического давления почвенного раствора.  [15]

Страницы:      1    2    3    4

Источник

ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ

Осмотическое давление — давление на раствор, отделенный от чистого растворителя полупроницаемой мембраной, при к-ром прекращается осмос, т. е. переход молекул растворителя в раствор через разделяющую их полупроницаемую мембрану или переход молекул растворителя через полупроницаемую мембрану от раствора, менее концентрированного, к раствору, более концентрированному. Полупроницаемые мембраны представляют собой естественные или искусственные пленки, проницаемые только для молекул растворителя (напр., воды) и не проницаемые для молекул растворенного вещества. Осмос и Осмотическое давление играют большую роль в поддержании концентрации веществ, растворенных в жидкостях организма, на определенном, физиологически необходимом уровне, и, следовательно, в распределении воды между тканями и клетками. При изучении изолированных клеток и тканей важно, чтобы искусственная культуральная среда была изотонична естественной среде. При введении в организм различного рода жидкостей наименьшие нарушения вызывают р-ры с Осмотическим давлением, равным Осмотическому давлению жидкостей организма.

Рис. Схема простейшего осмометра: 1— внешний сосуд, наполненный чистой водой; 2— внутренний сосуд из необожженной глины, в порах которого осаждена железосинеродистая медь, образующая полупроницаемую мембрану, наполнен исследуемым раствором; h — высота столба жидкости, гидростатическое давление которого равно избыточному давлению чистой воды на раствор, т. е. осмотическому давлению раствора.

Рис. Схема простейшего осмометра: 1- внешний сосуд, наполненный чистой водой; 2- внутренний сосуд из необожженной глины, в порах которого осаждена железосинеродистая медь, образующая полупроницаемую мембрану, наполнен исследуемым раствором; h — высота столба жидкости, гидростатическое давление которого равно избыточному давлению чистой воды на раствор, т. е. осмотическому давлению раствора.

Измерение О. д. (осмометрия) находит широкое применение для определения мол. веса (массы) биологически активных высокомолекулярных веществ, таких, как белки, углеводы, нуклеиновые к-ты и др. Измерение величины О. д. производят с помощью приборов, называемых осмометрами (рис.). Число молекул воды, сталкивающихся со стороны воды с полупроницаемой мембраной, образованной железосинеродистой медью, больше числа молекул воды, сталкивающихся с этой мембраной со стороны р-ра, т. к. концентрация молекул воды в р-ре ниже, чем в чистой воде. В результате этого происходит осмос и возникает избыточное гидростатическое давление на р-р, под действием к-рого скорость перехода молекул воды через мембрану в чистую воду возрастает. Если избыточное давление на р-р достигает величины, равной О. д. р-ра, то число молекул воды, проходящих сквозь мембрану в обоих направлениях, становится одинаковым, осмос прекращается, и между р-ром и растворителем, находящимися по обе стороны полупроницаемой мембраны, устанавливается осмотическое равновесие. Т. о., осмотическое давление возникает лишь в том случае, когда р-р и растворитель отделены друг от друга полупроницаемой мембраной.

Осмотическое давление изолированных клеток или тканей наиболее просто измерить методом плазмолиза. Для этого исследуемые объекты помещают в р-ры с разными концентрациями какого-нибудь вещества, по отношению к к-рому клеточная мембрана непроницаема. Растворы с О. д. более высоким, чем О. д. содержимого клеток (гипертонические р-ры), вызывают сморщивание клеток — плазмолиз вследствие перехода воды из клетки в р-р. Растворы с О. д. более низким, чем О. д. содержимого клеток (гипотонические р-ры), вызывают увеличение объема клеток в результате перехода воды из р-ра в клетку. Р-ры с О. д., равным О. д. содержимого клеток (изотонические р-ры), не вызывают изменения объема клеток. Зная концентрацию такого р-ра, вычисляют его О. д.; такова же будет величина О. д. и содержимого клеток. Важным фактором, определяющим прохождение воды через клеточную мембрану, особенно в начальной стадии процесса, могут быть мембранные потенциалы, к-рые вызывают электроосмотическое перемещение воды через оболочку клетки, так наз. аномальный осмос (см. Электроосмос). В подобных случаях измерение О. д. методом плазмолиза является неточным.

Определение Осмотического давления р-ров, содержащих низкомолекулярные вещества, для к-рых трудно приготовить непроницаемую мембрану, производят косвенными методами, обычно посредством измерения понижения температуры замерзания р-ра (см. Криометрия).

Я. Вант-Гофф показал, что Осмотическое давление разбавленных р-ров неэлектролитов подчиняется законам, установленным для давления газов (см.), и может быть вычислено по уравнению, аналогичному уравнению Клапейрона-Менделеева для газов:

π•v = n • RT, (1)

где π — осмотическое давление, v — объем раствора в л, n — число молей растворенного вещества-не-электролита, T — температура по абсолютной шкале, R — постоянная, численное значение к-рой таково же, как и для газов (R для газов равна 82,05*10-3 л-атм/град-моль).

Приведенное уравнение является математическим выражением закона Вант-Гоффа: О. д. разбавленного р-ра равно давлению, к-рое производило бы растворенное вещество, находясь в газообразном состоянии и занимая объем, равный объему р-ра при той же температуре. Введя в уравнение молярную концентрацию — с = nv получим π = c*RT.

О. д. р-ра электролита больше О. д. р-ра неэлектролита той же молярной концентрации. Это объясняется диссоциацией молекул электролита в р-ре на ионы, вследствие чего возрастает концентрация кинетически активных частиц, к-рой определяется величина О. д.

Число i, показывающее, во сколько раз О. д. (дэ) р-ра электролита больше О. д. (л) р-ра неэлектролита той же молярной концентрации, называют изотоническим коэффициентом Вант-Гоффа:

i = πэ/π

Численная величина i зависит от природы электролита и его концентрации в р-ре. Для слабых электролитов величина i может быть вычислена по формуле:

i = a*(N — 1) + 1,

где а — степень диссоциации электролита, а N — число ионов, на к-рые распадается одна молекула электролита. Для разбавленных р-ров сильных электролитов i можно принять равным N.

Из сказанного следует, что О. д. р-ра электролита можно вычислить по уравнению:

πэ = i • с • RT,

Читайте также:  Какое давление дают пожарные машины

где с — молярная концентрация.

Если в р-ре, кроме низкомолекулярных растворенных веществ, содержатся высокомолекулярные вещества (коллоиды), то О. д., обусловленное высокомолекулярными веществами, называют, по предложению Шаде (H. Schade), онкотическим, или коллоидно-осмотическим давлением.

Общее Осмотическое давление плазмы крови человека в норме равно 7,6 атм, онкотическое давление, обусловленное в основном белками плазмы, составляет только 0,03-0,04 атм. Онкотическое давление, несмотря на малую величину по сравнению с общим О. д. плазмы крови, играет большую роль в распределении воды между кровью и тканями организма.

Многие биополимеры, напр, белки, нуклеиновые к-ты и др., являясь полиэлектролитами, при диссоциации в р-ре образуют многозарядные ионы (полиионы) большого мол. веса (массы), для к-рых мембрана осмометра непроницаема, и обычные ионы малых размеров, проходящие сквозь полупроницаемую мембрану. Если в р-ре, заполняющем осмометр, содержится полиэлектролит, то низкомолекулярные ионы, диффундирующие сквозь мембрану, неравномерно распределяются по обе стороны мембраны (см. Мембранное равновесие). Наблюдаемое при этом избыточное гидростатическое давление в осмометре будет равно πБ = πБ + π1 — π2, где πБ — О. д., обусловленное биополимером, а π1 и π2 — О. д. низкомолекулярного электролита, находящегося в осмотической ячейке и во внешнем р-ре соответственно. При измерении О. д. р-ров биополимеров необходимо учитывать возможность неравномерного распределения низкомолекулярных электролитов по обе стороны полупроницаемой мембраны осмометра или проводить измерения при достаточном избытке низкомолекулярного электролита, специально вводимого в р-р биополимера. В этом случае низкомолекулярный электролит распределяется по обе стороны полупроницаемой мембраны практически равномерно, при этом = π1 = π2 и πБ = πН.

Осморегуляция

Совокупность механизмов, обеспечивающих поддержание О. д. в жидких средах организма на оптимальном для обмена веществ уровне, называют осморегуляцией. Получая информацию от рецепторных зон об изменении О. д. крови, ц. н. с. включает ряд механизмов, возвращающих систему в оптимальное для организма состояние. Включение происходит двумя путями: нервным и гуморальным. Отклонение величины О. д. от оптимального уровня улавливается в организме осморецепторами (см.), среди к-рых ведущее место занимают центральные осморецепторы, расположенные в супраоптическом и паравентрикулярном ядрах гипоталамуса (см.).

Клетки супраоптического ядра гипоталамуса способны секретировать антидиуретический гормон (АДГ), по аксонам этих клеток он перемещается в нейрогипофиз, где происходит его накопление и выведение в общий кровоток (см. Вазопрессин). АДГ влияет на реабсорбцию воды в дистальных отделах нефрона и способен вызывать сужение просвета сосудов. Афферентные сигналы, регулирующие выделение АДГ, поступают в гипоталамус от объемных рецепторов (волюморецепторов) левого предсердия, от рецепторов дуги аорты, от осморецепторов внутренней сонной артерии, от баро рецепторов и хеморецепторов каротидного синуса. Увеличение О. д. внеклеточной жидкости вызывает возрастание секреции АДГ как за счет самого осмотического давления, так и за счет уменьшения объема внеклеточной жидкости при обезвоживании организма. Т. о., на выделение АДГ влияют две системы сигнализации: сигнализация от осморецепторов и сигнализация от барорецепторов и волюморецепторов. Однако ведущим звеном в регуляции секреции АДГ все же является О. д. плазмы крови, действующее на осморецепторы гипоталамуса.

Особая роль в поддержании физиологических величин Осмотического давления принадлежит ионам натрия (см.). Дегидратация возникает именно в связи с изменением содержания ионов Na+. При обезвоживании из-за изменения содержания ионов Na+ уменьшение объема артериальной крови и межклеточной жидкости регистрируется волюморецепторами, импульсы от к-рых по нервным путям достигают отделов ц. н. с., регулирующих выделение одного из минералокортикоидных гормонов — альдостерона (см.), к-рый повышает реабсорбцию натрия. Центральная регуляция секреции альдостерона осуществляется гипоталамусом, продуцирующим адренокортикотропин-рилизинг-фактор (АКТГ-рилизинг-фактор), к-рый регулирует секрецию адренокортикотропного гормона (АКТГ), образуемого передней долей гипофиза (см. Адренокортикотропный гормон). Существует мнение, что наряду с влиянием АКТГ на секрецию альдостерона, есть особый центр регуляции секреции альдостерона, расположенный в среднем мозге. Именно сюда и поступает афферентная импульсация при уменьшении объема межклеточной жидкости в результате изменения содержания ионов натрия. Клетки центра регуляции секреции альдостерона в среднем мозге способны к нейросекреции — образующийся гормон поступает в эпифиз, где накапливается и оттуда выделяется в кровь. Этот гормон получил название адреногломерулотропина (АГТГ).

Выделение АДГ и альдостерона может регулироваться и ангиотензином (см.), очевидно путем его действия на особые рецепторы гипоталамических нейронов. Ренин-ангиотензинная система почек может выступать как волюморецепторная зона, реагирующая на изменение почечного кровотока.

На нормализацию измененного О. д. влияют также мочевыделение (см. Диурез), транскапиллярный обмен жидкости и ионов (см. Водно-солевой обмен), потоотделение (см.), выделение жидкости через легкие (с выдыхаемым воздухом в сутки теряется 350-400 мл воды) и выделение жидкости через жел.-киш. тракт (100-200 мл воды теряется с калом).

Способностью к нормализации Осмотического давления обладает и сама кровь. Она может выполнять роль осмотического буфера при всевозможных сдвигах как в сторону осмотической гипертонии, так и гипотонии. По-видимому, эта функция крови связана, во-первых, с перераспределением ионов между плазмой и эритроцитами и, во-вторых, со способностью белков плазмы крови связывать или отдавать ионы.

При уменьшении водных ресурсов организма или нарушении нормального соотношения между водой и минеральными солями (гл. обр. хлористым натрием) возникает жажда (см.), удовлетворение к-рой способствует поддержанию физиологического уровня водного баланса и электролитного равновесия в организме (см. Гомеостаз).

Библиография: Бладергрён Н. В. Физическая химия в медицине и биологии, пер. с нем., с. 102 и др., М., 1951; Вагнер Р. Г. Определение осмотического давления, в кн.: Физич. методы органической химии, под ред. А. Вайсбергера, пер. с англ., т. 1, с. 270, М., 1950, библиогр.; Гинецинский А. Г. Физиологические механизмы водно-солевого равновесия, М.-Л., 1963; Губанов Н. И. и Утепбергенов А. А. Медицинская биофизика, с. 149, М., 1978; Наточин Ю. В. Ионорегулирующая функция почки, Д., 1976; Сатпаева X. К. Внепочечные механизмы осморегуляции, Алма-Ата, 1971, библиогр.; Уильямс В. и Уильямс X. Физическая химия для биологов, пер. с англ., с. 146, М., 1976; Физиология почки, под ред. Ю. В. Наточина, Л., 1972; Andeon В. Regulation of water intake, Physiol. Rev., v. 58, p. 582, 1978, bibliogr.

В. П. Мишин; С. А. Осиповский (физ.).

Источник