Какая связь между скоростью и давлением

Закон Бернулли

Рисунок из «Гидродинамики» Д. Бернулли: из-за течения по трубе, компенсирующего расход через правое отверстие О, давление в трубе меньше, чем в сосуде слева.

Зако́н Берну́лли[1] (также уравне́ние Берну́лли[2][3], теоре́ма Берну́лли[4][5] или интегра́л Берну́лли[2][6][7]) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости[2] (то есть без вязкости и теплопроводности).

История[править | править код]

Для случая несжимаемой жидкости результат, эквивалентный современному уравнению Бернулли, был опубликован в 1738 году Даниилом Бернулли[K 1]. В современном виде интеграл был опубликован Иоганном Бернулли в 1743 году[11] для случая несжимаемой жидкости, а для некоторых случаев течений сжимаемой жидкости — Эйлером в 1757 году[12].

Интеграл Бернулли в несжимаемой жидкости[править | править код]

Для стационарного течения несжимаемой жидкости уравнение Бернулли может быть получено как следствие закона сохранения энергии. Закон Бернулли утверждает, что величина сохраняет постоянное значение вдоль линии тока:

Здесь

— плотность жидкости; — скорость потока; — высота; — давление; — ускорение свободного падения.

Элементарный вывод уравнения Бернулли из закона сохранения энергии

Элементарный вывод уравнения Бернулли из закона сохранения энергии приведён, например, в учебнике Д. В. Сивухина[13]. Рассматривается стационарное движение жидкости вдоль линии тока, изображённое на рисунке. Слева на объем жидкости, первоначально заключённый между двумя сечениями и , действует сила , а справа — противоположного направления сила . Скорость и давление в сечениях 1 и 2, а также их площади обозначены нижними индексами 1 и 2. За бесконечно малое время левая граница этого объёма жидкости сместилась на малое расстояние , а правая — на расстояние . Работа, совершённая силами давления, равна:

В начале интервала времени объем жидкости, заключённый между двумя поверхностями и , состоит из левого голубого элемента и средней синей части, в конце этого интервала сместившийся объём состоит из средней синей части и правого голубого элемента. Так как течение стационарное, вклад синего фрагмента в энергию и массу обсуждаемого объёма жидкости не меняется, а сохранение массы позволяет заключить, что масса левого голубого элемента равна массе правого голубого элемента: Поэтому работа сил, выражение для которой можно преобразовать к виду: равна изменению энергии, равному, в свою очередь, разности энергий правого голубого элемента и левого голубого элемента .

Для несжимаемой жидкости можно, во-первых, в выражении для работы положить и, во-вторых, в выражении для энергии элемента жидкости ограничиться кинетической и потенциальной энергией: После этого равенство даёт: , или .

Константа в правой части (может различаться для различных линий тока) иногда называется полным давлением[2]. Могут также использоваться термины «весовое давление» , «статическое давление» и «динамическое давление» . По словам Д. В. Сивухина[13], нерациональность этих понятий отмечалась многими физиками.

Размерность всех слагаемых — единица энергии на единицу объёма. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Третье слагаемое по своему происхождению является работой сил давления (см. приведённый выше вывод уравнения Бернулли), но в гидравлике может называться «энергией давления» и частью потенциальной энергии[14]).

Вывод формулы Торричелли из закона Бернулли[править | править код]

Иллюстрация формулы Торричелли

В применении к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда закон Бернулли даёт равенство полных давлений на свободной поверхности жидкости и на выходе из отверстия:

где

— высота столба жидкости в сосуде, отсчитанная от уровня отверстия, — скорость истечения жидкости, — атмосферное давление.

Отсюда: . Это — формула Торричелли. Она показывает, что при истечении жидкость приобретает скорость, какую получило бы тело, свободно падающее с высоты . Или, если истекающую из малого отверстия в сосуде струю направить вверх, в верхней точке (в пренебрежении потерями) струя достигнет уровня свободной поверхности в сосуде[15].

Другие проявления и применения закона Бернулли[править | править код]

Закон Бернулли объясняет эффект Вентури: в узкой части трубы скорость течения жидкости выше, а давление меньше, чем в широкой части

Приближение несжимаемой жидкости, а с ним и закон Бернулли справедливы и для ламинарных течений газа, если только скорости течения малы по сравнению со скоростью звука[16].

Читайте также:  Какие быстро снизить давление

Вдоль горизонтальной трубы координата постоянна и уравнение Бернулли принимает вид . Отсюда следует, что при уменьшении сечения потока из-за возрастания скорости давление падает. Эффект понижения давления при увеличении скорости потока лежит в основе работы расходомера Вентури[17] и струйного насоса[1].

Закон Бернулли объясняет, почему суда, движущиеся параллельным курсом, могут притягиваться друг к другу (например, такой инцидент произошёл с лайнером «Олимпик»)[18].

Применение в гидравлике[править | править код]

Последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики. Для технических приложений часто уравнение Бернулли записывается в виде, в котором все члены разделены на «удельный вес» :

где имеющие размерность длины члены в этом уравнении могут иметь следующие названия:

— гидравлическая высота[4] или напор[19], — нивелирная высота[4], — пьезометрическая высота[4] или (в сумме с нивелирной высотой) гидростатический напор[19], — скоростная высота[4] или скоростной напор[19].

Закон Бернулли справедлив только для идеальных жидкостей, в которых отсутствуют потери на вязкое трение. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, приближённо учитывающих различные «гидравлические потери напора»[19].

Интеграл Бернулли в баротропных течениях[править | править код]

Уравнение Бернулли может быть выведено и из уравнения движения жидкости[K 2][K 3]. При этом течение предполагается стационарным и баротропным. Последнее означает, что плотность жидкости или газа не обязательно постоянна (как у предполагавшейся ранее несжимаемой жидкости), но является функцией только давления: , что позволяет ввести функцию давления[22] В этих предположениях величина

постоянна вдоль любой линии тока и любой вихревой линии. Соотношение справедливо для течения в любом потенциальном поле, при этом заменяется на потенциал массовой силы .

Вывод интеграла Бернулли для баротропного течения

Для безвихревых баротропных течений, скорость которых может быть выражена в виде градиента потенциала скорости , интеграл Бернулли в виде [K 4] сохраняется также в нестационарных течениях, причём постоянная в правой части имеет одинаковое значение для всего течения[25].

Формула Сен-Венана — Ванцеля[править | править код]

Если в течении совершенного газа выполняется адиабатический закон[26]

то уравнение Бернулли выражается так[27] (вкладом от силы тяжести обычно можно пренебречь):

вдоль линии тока или вихревой линии. Здесь — показатель адиабаты газа, выражающийся через теплоёмкости при постоянном давлении и при постоянном объёме, — давление и плотность газа, — условно выбранные постоянные (одинаковые для всего течения) значения давления и плотности.

С помощью полученной формулы находят скорость газа, вытекающего из сосуда с высоким давлением через малое отверстие. Удобно давление и плотность газа в сосуде, скорость газа в котором равна нулю, принять за тогда скорость истечения выражается через внешнее давление по формуле Сен-Венана — Ванцеля[28]:

Термодинамика закона Бернулли[править | править код]

Из термодинамики следует, что вдоль линии тока любого стационарного течения идеальной жидкости

где — энтальпия единицы массы, — гравитационный потенциал (равный для однородной силы тяжести), — энтропия единицы массы.

Вывод закона Бернулли из уравнения Эйлера и термодинамических соотношений

Интеграл Бернулли применяют в инженерных расчётах, в том числе для сред, весьма далёких по своим свойствам от идеального газа, например для водяного пара, используемого в качестве теплоносителя в паровых турбин. При этом могут использоваться так называемые диаграммы Молье, представляющих удельную энтальпию (по оси ординат) как функцию удельной энтропии (по оси абсцисс) и например давления (или температуры) в виде семейства изобар (изотерм). В этом случае последовательность состояний вдоль линии тока лежат на некоторой вертикальной линии (). Длина отрезка этой линии, отсекаемого двумя изобарами, соответствующего начальному и конечному давлению теплоносителя, равен половине изменения квадрата скорости[31].

Обобщения интеграла Бернулли[править | править код]

Интеграл Бернулли также сохраняется при переходе потока через фронт ударной волны, в системе отсчета, в которой ударная волна покоится[32]. Однако при таком переходе энтропия среды не остаётся постоянной (возрастает), поэтому соотношение Бернулли является лишь одним из трёх соотношений Гюгонио, наряду с законами сохранения массы и импульса, связывающих состояние среды за фронтом с состоянием среды перед фронтом и со скоростью ударной волны.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений[33]), в магнитной гидродинамике[34], феррогидродинамике[35]. В релятивистской гидродинамике, когда скорости течения становятся сравнимыми со скоростью света , интеграл формулируется в терминах релятивистски инвариантных[36] удельной энтальпии и удельной энтропии[37].

Комментарии[править | править код]

  1. ↑ В записи Д.Бернулли в явном виде не фигурировало внутреннее давление в жидкости[8][9][10].
  2. ↑ «…[Вывод теоремы Бернулли из уравнения энергии] обедняет содержание теоремы Бернулли … Интеграл Бернулли, вообще говоря, не зависит от уравнения энергии, хотя действительно совпадает с ним для изоэнтропического и адиабатического движения совершенного газа»[20].
  3. ↑ «Два … пути получения уравнения Бернулли не эквивалентны. При энергетическом выводе нет необходимости в предположении об изэнтропичности течения. При интегрировании уравнения движения интегралы Бернулли получаются не только вдоль линий тока, но и вдоль вихревых линий»[21].
  4. ↑ В русскоязычной литературе интеграл Бернулли для потенциальных течений несжимаемой или баротропной жидкости известен как интеграл Коши — Лагранжа[25]
Читайте также:  В какую сторону сместится равновесие системы при понижении давления

Примечания[править | править код]

  1. ↑ 1 2 Ландсберг Г. С. Закон Бернулли, 1985.
  2. ↑ 1 2 3 4 Вишневецкий С. Л. Бернулли уравнение, 1988.
  3. ↑ Титьенс О., Прандтль Л. Гидро- и аэромеханика, 1933.
  4. ↑ 1 2 3 4 5 Лойцянский Л. Г. Механика жидкости и газа, 2003, §24. Теорема Бернулли.
  5. ↑ Милн-Томсон Л. М. Теоретическая гидродинамика, 1964.
  6. ↑ Седов Л. И. Механика сплошной среды, 1970.
  7. ↑ Чёрный Г. Г. Газовая динамика, 1988.
  8. ↑ Трусделл К. Очерки по истории механики, 2002.
  9. ↑ Михайлов Г. К., 1999, с. 17.
  10. ↑ Darrigol O. A history of hydrodynamics, 2005, с. 9.
  11. ↑ Трусделл К. Очерки по истории механики, 2002, с. 255, 257.
  12. ↑ Euler L. Continuation des recherches, 1755 (1757), с. 331.
  13. ↑ 1 2 Сивухин Д. В. Механика, 1989, §94. Стационарное движение идеальной жидкости. Уравнение Бернулли.
  14. ↑ Чугаев Р. Р. Гидравлика. — Л.: Энергия, 1975. — 600 с.
  15. ↑ Сивухин Д. В. Механика, 1989, §95. Примеры на применение уравнения Бернулли. Формула Торричелли.
  16. ↑ Сивухин Д. В. Механика, 1989, §94, формула (94.6).
  17. ↑ Молоканов Ю. К. Процессы и аппараты нефтегазопереработки. — М.: Химия, 1980. — С. 60. — 408 с.
  18. ↑ Я. И. Перельман. Отчего притягиваются корабли?. Дата обращения: 27 декабря 2018.
  19. ↑ 1 2 3 4 5 Напор, 1992.
  20. ↑ Бэтчелор Дж. Введение в динамику жидкости, 1973, Примечание Г. Ю. Степанова, с. 208.
  21. ↑ Гольдштейн Р. В., Городцов В. А. Механика сплошных сред, 2000, с. 104.
  22. ↑ Лойцянский Л. Г. Механика жидкости и газа, 2003, §23, уравнение (9).
  23. ↑ Лойцянский Л. Г. Механика жидкости и газа, 2003, §23, уравнение (7).
  24. ↑ Седов Л. И. Механика сплошной среды, 1970, Глава VIII. §2, уравнение (2.1).
  25. ↑ 1 2 Лойцянский Л. Г. Механика жидкости и газа, 2003, §42. Интеграл Лагранжа — Коши.
  26. ↑ Лойцянский Л. Г. Механика жидкости и газа, 2003, §24, уравнение (29).
  27. ↑ Лойцянский Л. Г. Механика жидкости и газа, 2003, §24, уравнение (30).
  28. ↑ Лойцянский Л. Г. Механика жидкости и газа, 2003, §24, уравнение (31).
  29. ↑ Ландау Л. Д., Лифшиц Е. М. Гидродинамика, 2001, Уравнение (2.4).
  30. ↑ Седов Л. И. Механика сплошной среды, 1970, Глава VII. §2. Функция давления.
  31. ↑ Поль Р. В., Механика, акустика и учение о теплоте, 2013, с. 446.
  32. ↑ Ландау Л. Д., Лифшиц Е. М. Гидродинамика, 2001, §85.
  33. ↑ Голубкин В. Н., Сизых Г. Б. О некоторых общих свойствах плоскопараллельных течений вязкой жидкости // Известия АН СССР, серия Механика жидкости и газа : журнал. — 1987. — № 3. — С. 176-178. — doi:10.1007/BF01051932.
  34. ↑ Куликовский А. Г., Любимов Г. А. Магнитная гидродинамика. — М.: Физматлит, 1962. — С. 54. — 248 с.
  35. ↑ Розенцвейг Р. Феррогидродинамика / Пер. с англ. под ред. В. В. Гогосова. — М.: Мир, 1989. — С. 136. — 359 с. — ISBN 5-03-000997-3.
  36. ↑ Зубарев Д. Н., Релятивистская термодинамика, 1994.
  37. ↑ Ландау Л. Д., Лифшиц Е. М. Гидродинамика, 2001, Уравнение (134.11).

Литература[править | править код]

  • Бэтчелор Дж. Введение в динамику жидкости / Пер. с англ. под ред. Г. Ю. Степанова. — М.: Мир, 1973. — 760 с.
  • Вишневецкий С. Л. Бернулли уравнение // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова-Бома эффект — Длинные линии. — С. 187. — 704 с.
  • Гольдштейн Р. В., Городцов В. А. Механика сплошных сред. Часть 1. — М.: Физматлит, 2000. — 256 с. — ISBN 5-02-015555-1.
  • Зубарев, Д. Н. Релятивистская термодинамика // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга-Робертсона эффект — Стримеры. — С. 333-334. — 704 с. — ISBN 5-85270-087-8.
  • Ландау, Л. Д., Лифшиц, Е. М. Гидродинамика. — Издание 5-е, стереотипное. — М.: Физматлит, 2001. — 736 с. — («Теоретическая физика», том VI). — ISBN 5-9221-0121-8.
  • Лойцянский Л. Г. Механика жидкости и газа. — М.: Дрофа, 2003. — 842 с. — ISBN 5-7107-6327-6.
  • Милн-Томсон Л. М. Теоретическая гидродинамика. — М.: Мир, 1964. — 656 с.
  • Михайлов Г. К. Становление гидравлики и гидродинамики в трудах петербургских академиков (XVIII) // Известия Академии наук, серия Механика жидкости и газа : журнал. — 1999. — Вып. 6. — С. 7-25.
  • Напор // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1992. — Т. 3: Магнитоплазменный компрессор — Пойнтинга теорема. — С. 242. — 672 с. — ISBN 5-85270-019-3.
  • Поль Р. В. Механика, акустика и учение о теплоте. — Рипол Классик, 2013. — 490 с. — ISBN 5458431251, 9785458431255.
  • Седов Л. И. Механика сплошной среды. — М.: Наука, 1970. — Т. 2. — 568 с.
  • Сивухин Д. В. Общий курс физики. — Издание 3-е, исправленное и дополненное. — М.: Наука, 1989. — Т. I. Механика. — 576 с. — ISBN 5-02-014054-6.
  • Титьенс О., Прандтль Л. Гидро- и аэромеханика. — М.-Л.: ГТТИ, 1933. — Т. 1. — 224 с.
  • Трусделл К. Очерки по истории механики. — М. — Ижевск: Институт компьютерных исследований, 2002. — 316 с. — ISBN 5-93972-192-3.
  • Фабер Т. Е. Гидроаэродинамика / Пер. с англ. под ред. А. А. Павельева. — М.: Постмаркет, 2001. — 560 с. — ISBN 5-901095-04-9.
  • Чёрный Г. Г. Газовая динамика. — М.: Наука, 1988. — 424 с. — ISBN 5-02-013814-2.
  • §182. Закон Бернулли // Элементарный учебник физики / Под ред. Г. С. Ландсберга. — М.: Наука, 1985. — Т. 1. Механика. Теплота. Молекулярная физика.
  • Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl. — Oxford: Oxford University Press, 2005. — 356 с. — ISBN 978-0-19-856843-8.
  • Euler L. Continuation des recherches sur la théorie du mouvement des fluides // Mémoires de l’Académie royale des sciences et belles lettres. — Berlin, 1755 (1757). — Т. 11. — С. 316-361.
  • Truesdell, Clifford Ambrose. Rational fluid mechanics, 1687-1765. Editor’s duction to Euleri Opera omnia II 12 // Leonardi Euleri. Opera Omnia. — Lausanne: Auctoritate et Impensis, Societas Scientiarum Naturalium Helveticae, 1954. — Т. 12. — С. I-CXXV. — (II).
Читайте также:  Какое должно быть давление и пульс у старого человека

Ссылки[править | править код]

  • Русский перевод трактата Даниила Бернулли, в котором впервые появляется интеграл (закон) Бернулли

Источник

Связь давления и скорости в потоке

Связь давления и скорости в потоке жидкости — обратная: если в каком-то месте потока скорость увеличивается, то давление здесь малó, и, наоборот, там, где скорости невелики, давление повышенное. Эту законо­мерность объясним на основе уравнения Бернýлли.

Рассмотрим работу водоструйного насоса (см. рис. 11). На подходе по на­гнетательному трубопроводу 1 поток рабочей жидкости имеет относи­те­ль­но небольшую скорость v1 и высокое избыточное давление pизб1. Проходя через соплó 2, поток сужается, скорость его резко возрастает до v2. Для дальнейших рассуждений запишем уравнение Бернýлли так:

Какая связь между скоростью и давлением.

Здесь нет z1 и z2, так как труба горизонтальная, а величиной потерь на­пора DH»0 пренебрегаем. Так как в правой части уравнения кинети­ческая составляющая энергии потока резко возросла из-за увеличения v2, то потенциальная составляющая, связанная с избыточным давлением после соплá pизб2, наоборот, уменьшится. Величину pизб2 можно выразить из этого уравнения и найти численное значение. Если pизб2 получается отри­цательным, то, значит, возник вакуум (полное давление в струе стало меньше атмосферного). В последнем случае пьезометрическая линия опу­стится ниже отметки самой струи (см. рис 11).

Таким образом в струе рабочей жидкости после соплá образуется об­ласть пониженного давления или даже вакуум, что вызывает подсос транс­портируемой жид­кости по всасывающему трубопроводу 3 (см. рис. 11). Далее обе жидкости смешиваются в горловине 4 и транспортируются по отво­дяще­му трубопро­воду 5.

Водоструйные насосы не имеют трущихся частей, в этом их пре­имущес­тво перед механическими. По их принципу работают также эжекто­ры, гидро­эле­ваторы, насосы для создания вакуума.

Режимы движения жидкости

При проведении гидравлического расчёта в первую очередь нужно выяснять: какой режим движения будет наблюдаться у данного потока?

Режимы движения всех потоков (напорных и безнапорных) де­лятся на два типа (рис. 12):

1) ламинарный, то есть спокойный, параллельноструйный, при ма­лых скоростях;

2) турбулентный, то есть бурлящий, вихреобразный, с водоворота­ми, при больших скоростях.

Какая связь между скоростью и давлением

Для выяснения типа режима нужно рассчитать число Рейнольдса Re и сравнить его с критическим Reкр.

Число Рéйнольдса Re — это безразмерный критерий, вычисляемый по формулам:

— для напорных потоков

Re=vd/n,

где d- внутренний диаметр напорного трубопровода;

— для безнапорных потоков

Re=vR/n,

где R- гидравлический радиус безнапорного потока, м (см. с. 14).

Критическое число Рейнольдса Reкр — это число Рейнольдса, при котором наступает смена режима движения.

Для напорных потоков

Reкр=2320,

для безнапорных потоков

Reкр»500.

Упрощённо режим движения потока можно определить по шкале чисел Рейнольдса (см. рис. 12). Рассмотрим пример с напорной водопроводной тру­бой, у которой d=20мм, v=1м/с, n=10-6м2/с. Для потока в дан­ной трубе число Рейнольдса составит:

Re=1×0,02/10-6 = 20000.

Число 20000больше, чем Reкр=2320 (для напорных потоков) и на рис.12 оно находится в правой части шкалы, следовательно, режим потока турбулентный и все дальнейшие гидравлические расчёты должны проводиться только по зависимостям и формулам для этого ре­жима.

Источник