К каким классам веществ относятся реагенты и продукты их реакции
Содержание статьи
Классификация химических реакций
Темы кодификатора ЕГЭ: Классификация химических реакций в органической и неорганической химии.
Химические реакции — это такой вид взаимодействия частиц, когда из одних химических веществ получаются другие, отличающиеся от них по свойствам и строению. Вещества, которые вступают в реакцию — реагенты. Вещества, которые образуются в ходе химической реакции — продукты.
В ходе химической реакции разрушаются химические связи, и образуются новые.
В ходе химических реакций не меняются атомы, участвующие в реакции. Меняется только порядок соединения атомов в молекулах. Таким образов, число атомов одного и того же вещества в ходе химической реакции не меняется.
Химические реакции классифицируют по разным признакам. Рассмотрим основные виды классификации химических реакций.
Классификация по числу и составу реагирующих веществ
По составу и числу реагирующих веществ разделяют реакции, протекающие без изменения состава веществ, и реакции, протекающие с изменением состава веществ:
1. Реакции, протекающие без изменения состава веществ (A → B)
К таким реакциям в неорганической химии можно отнести аллотропные переходы простых веществ из одной модификации в другую:
Sромбическая → Sмоноклинная.
В органической химии к таким реакциям относятся реакции изомериза-ции, когда из одного изомера под действием катализатора и внешних факторов получается другой (как правило, структурный изомер).
Например, изомеризация бутана в 2-метилпропан (изобутан):
CH3-CH2-CH2-CH3 → CH3-CH(CH3)-CH3.
2. Реакции, протекающие с изменением состава
- Реакции соединения (A + B + … → D) — это такие реакции, в которых из двух и более веществ образуется одно новое сложное вещество. В неорганической химии к реакция соединения относятся реакции горения простых веществ, взаимодействие основных оксидов с кислотными и др. В органической химии такие реакции называются реакциями присоединения. Реакции присоединения — это такие реакции, в ходе которых к рассматриваемой органической молекуле присоединяется другая молекула. К реакциям присоединения относятся реакции гидрирования (взаимодействие с водородом), гидратации (присоединение воды), гидрогалогенирования (присоединение галогеноводорода), полимеризация (присоединение молекул друг к другу с образованием длинной цепочки) и др.
Например, гидратация :
CH2=CH2 + H2O → CH3-CH2-OH
- Реакции разложения (A → B + C + …) — это такие реакции, в ходе которых из одной сложной молекулы образуется несколько менее сложных или простых веществ. При этом могут образовываться как простые, так и сложные вещества.
Например, при разложении пероксида водорода:
2H2O2 → 2H2O + O2.
В органической химии разделяют собственно реакции разложения и реакции отщепления. Реакции отщепления (элиминирования) — это такие реакции, в ходе которых происходит отрыв атомов или атомных групп от исходной молекулы при сохранении ее углеродного скелета.
Например, реакция отщепления водорода (дегидрирование) от пропана:
C3H8 → C3H6 + H2
Как правило, в названии таких реакций есть приставка «де». Реакции разложения в органической химии происходят, как правило, с разрывом углеродной цепи.
Например, реакция крекинга бутана (расщепление на более простые молекулы при нагревании или под действием катализатора):
C4h20 → C2H4 + C2H6
- Реакции замещения — это такие реакции, в ходе которых атомы или группы атомов одного вещества замещаются на атомы или группы атомов другого вещества. В неорганической химии эти реакции происходят по схеме:
AB + C = AC + B.
Например, более активные галогены вытесняют менее активные из соединений. Взаимодействие йодида калия с хлором:
2KI + Cl2 → 2KCl + I2.
Замещаться могут как отдельные атомы, так и молекулы.
Например, при сплавлении менее летучие оксиды вытесняют более летучие из солей. Так, нелетучий оксид кремния вытесняет оксид углерода из карбоната натрия при сплавлении:
Na2CO3 + SiO2 → Na2SiO3 + CO2
В органической химии реакции замещения — это такие реакции, в ходе которых часть органической молекулы замещается на другие частицы. При этом замещенная частица, как правило, соединяется с частью молекулы-заместителя.
Например, реакция хлорирования метана:
CH4 + Cl2 → CH3Cl + HCl
По числу частиц и составу продуктов взаимодействия эта реакция больше похожа на реакцию обмена. Тем не менее, по механизму такая реакция является реакцией замещения.
- Реакции обмена — это такие реакции, в ходе которых два сложных вещества обмениваются своими составными частями:
AB + CD = AC + BD
К реакциям обмена относятся реакции ионного обмена, протекающие в растворах; реакции, иллюстрирующие кислотно-основные свойства веществ и другие.
Пример реакции обмена в неорганической химии — нейтрализация соляной кислоты щелочью:
NaOH + HCl = NaCl + H2O
Пример реакции обмена в органической химии — щелочной гидролиз хлорэтана:
CH3-CH2-Cl + KOH = CH3-CH2-OH + KCl
Классификация химических реакций по изменению степени окисления элементов, образующих вещества
По изменению степени окисления элементов химические реакции делят на окислительно-восстановительные реакции, и реакции, идущие без изменения степеней окисления химических элементов.
- Окислительно-восстановительные реакции (ОВР) — это реакции, в ходе которых степени окисления веществ изменяются. При этом происходит обмен электронами.
В неорганической химии к таким реакциям относятся, как правило, реакции разложения, замещения, соединения, и все реакции, идущие с участием простых веществ. Для уравнивания ОВР используют метод электронного баланса (количество отданных электронов должно быть равно количеству полученных) или метод электронно-ионного баланса.
В органической химии разделяют реакции окисления и восстановления, в зависимости от того, что происходит с органической молекулой.
Реакции окисления в органической химии — это реакции, в ходе которых уменьшается число атомов водорода или увеличивается число атомов кислорода в исходной органической молекуле.
Например, окисление этанола под действием оксида меди:
CH3-CH2-OH + CuO → CH3-CH=O + H2O + Cu
Реакции восстановления в органической химии — это реакции, в ходе которых увеличивается число атомов водорода или уменьшается число атомов кислорода в органической молекуле.
Например, восстановление уксусного альдегида водородом:
CH3-CH=O + H2 → CH3-CH2-OH
- Протолитические реакции и реакции обмена — это такие реакции, в ходе которые степени окисления атомов не изменяются.
Например, нейтрализация едкого натра азотной кислотой:
NaOH + HNO3 = H2O + NaNO3
Классификация реакций по тепловому эффекту
По тепловому эффекту реакции разделяют на экзотермические и эндотермические.
Экзотермические реакции — это реакции, сопровождающиеся выделением энергии в форме теплоты (+Q). К таким реакциям относятся почти все реакции соединения.
Исключения — реакция азота с кислородом с образованием оксида азота (II) — эндотермическая:
N2 + O2 = 2NO — Q
Реакция газообразного водорода с твердым йодом также эндотермическая:
H2 + I2 = 2HI — Q
Экзотермические реакции, в ходе которых выделяется свет, называют реакциями горения.
Например, горение метана:
CH4 + O2 = CO2 + H2O
Также экзотермическими являются:
- реакции щелочных металлов с водой;
- реакции, сопровождающиеся взрывом;
- разложение дихромата аммония («вулканчик»);
- образование аммиака: N2 + 3H2 = 2NH3;
- реакции нейтрализации;
- синтез метанола;
- алюмотермия;
- реакции, в которых из менее стабильных веществ образуются более стабильные;
- в органической химии — реакции присоединения, реакции горения, окисления и др.
Эндотермические реакции — это реакции, сопровождающиеся поглощением энергии в форме теплоты (- Q). Как правило, с поглощением теплоты идет большинство реакций разложения (реакции, требующие длительного нагревания).
Например, разложение известняка:
CaCO3 → CaO + CO2 — Q
Также эндотермическими являются:
- реакции гидролиза;
- реакции, идущие только при нагревании;
- реакции, протекающие только при очень высоких температурах или под действием электрического разряда.
Например, превращение кислорода в озон:
3O2 = 2O3 — Q
В органической химии с поглощением теплоты идут реакции разложения. Например, крекинг пентана:
C5h22 → C3H6 + C2H6 — Q.
Классификация химических реакций по агрегатному состоянию реагирующих веществ (по фазовому составу)
Вещества могут существовать в трех основных агрегатных состояниях — твердом, жидком и газообразном. По фазовому состоянию разделяют реакции гомогенные и гетерогенные.
- Гомогенные реакции — это такие реакции, в которых реагирующие вещества и продукты находятся в одной фазе, и столкновение реагирующих частиц происходит во всем объеме реакционной смеси. К гомогенным реакциям относят взаимодействия жидкость-жидкость и газ-газ.
Например, окисление сернистого газа:
2SO2(г) + O2(г) = 2SO3(г)
- Гетерогенные реакции — это реакции, в которых реагирующие вещества и продукты находятся в разных фазах. При этом столкновение реагирующих частиц происходит только на границе соприкосновения фаз. К таким реакциям относятся взаимодействия газ-жидкость, газ-твердая фаза, твердая-твердая, и твердая фаза — жидкость.
Например, взаимодействие углекислого газа и гидроксида кальция:
CO2(г) + Ca(OH)2(р-р) = CaCO3(тв) + H2O
Для классификации реакций по фазовому состоянию полезно уметь определять фазовые состояния веществ. Это достаточно легко сделать, используя знания о строении вещества, в частности, о типах кристаллической решетки.
Вещества с ионной, атомной или металлической кристаллической решеткой, как правило твердые при обычных условиях; вещества с молекулярной решеткой, как правило, жидкости или газы при обычных условиях.
Обратите внимание, что при нагревании или охлаждении вещества могут переходить из одного фазового состояния в другое. В таком случае необходимо ориентироваться на условия проведения конкретной реакции и физические свойства вещества.
Например, получение синтез-газа происходит при очень высоких температурах, при которых вода — пар:
CH4(г) + H2O(г) = CO(г) + 3H2(г)
Таким образом, паровая конверсия метана — гомогенная реакция.
Классификация химических реакций по участию катализатора
Катализатор — это такое вещество, которое ускоряет реакцию, но не входит в состав продуктов реакции. Катализатор участвует в реакции, но практичсеки не расходуется в ходе реакции. Условно схему действия катализатора К при взаимодействии веществ A + B можно изобразить так: A + K = AK; AK + B = AB + K.
В зависимости от наличия катализатора различают каталитические и некаталитические реакции.
- Каталитические реакции — это реакции, которые идут с участием катализаторов. Например, разложение бертолетовой соли: 2KClO3 → 2KCl + 3O2.
- Некаталитические реакции — это реакции, которые идут без участия катализатора. Например, горение этана: 2C2H6 + 5O2 = 2CO2 + 6H2O.
Все реакции, протекающие с участием в клетках живых организмов, протекают с участием особых белковых катализаторов — ферментов. Такие реакции называют ферментативными.
Более подробно механизм действия и функции катализаторов рассматриваются в отдельной статье.
Классификация реакций по способности протекать в обратном направлении
Обратимые реакции — это реакции, которые могут протекать и в прямом, и в и обратном направлении, т.е. когда при данных условиях продукты реакции могут взаимодействовать друг с другом. К обратимым реакциям относятся большинство гомогенных реакций, этерификация; реакции гидролиза; гидрирование-дегидрирование, гидратация-дегидратация; получение аммиака из простых веществ, окисление сернистого газа, получение галогеноводородов (кроме фтороводорода) и сероводорода; синтез метанола; получение и разложение карбонатов и гидрокарбонатов, и т.д.
Необратимые реакции — это реакции, которые протекают преимущественно в одном направлении, т.е. продукты реакции не могут взаимодействовать друг с другом при данных условиях. Примеры необратимых реакций: горение; реакции, идущие со взрывом; реакции, идущие с образованием газа, осадка или воды в растворах; растворение щелочных металлов в воде; и др.
Источник
Классификация химических реакций
Сложность статьи
Определение
Химическая реакция — это превращение одних веществ (реагентов) в другие, отличающиеся по химическому составу или строению (продукты реакции).
ПРИЗНАКИ ХИМИЧЕСКИХ РЕАКЦИЙ
Химическое превращение от физического всегда можно отличить по наличию одного или нескольких признаков:
изменение цвета;
выпадение осадка;
выделение газа;
образование слабодиссоциированных веществ (например, воды);
выделение энергии (тепловой или световой).
ТИПЫ КЛАССИФИКАЦИЙ ХИМИЧЕСКИХ РЕАКЦИЙ
Существует несколько подходов к классификации химических реакций^
по числу и составу реагирующих и образующихся веществ
по изменению степени окисления
по агрегатному состоянию реагирующих веществ
по тепловому эффекту
по участию катализатора
по направлению протекания реакции
Рассмотрим их подробнее.
КЛАССИФИКАЦИЯ ПО ЧИСЛУ И СОСТАВУ РЕАГИРУЮЩИХ И ОБРАЗУЮЩИХСЯ ВЕЩЕСТВ
Например:
Первая реакция является реакцией соединения (иногда говорят присоединения), поскольку из двух веществ получается одно. Во второй реакции, наоборот, из одного вещества получается два и это реакция разложения.
В реакциях замещения простое вещество замещает один из элементов в сложном веществе, в результате чего получается новое просто вещество и новое сложное вещество. Например:
В реакциях обмена два сложных вещества обмениваются своими составными частями и образуется два новых сложных вещества:
КЛАССИФИКАЦИЯ ПО ИЗМЕНЕНИЮ СТЕПЕНИ ОКИСЛЕНИЯ
Определение
Окислительно-восстановительные реакции (ОВР) — реакции, протекающие с изменением степеней окисления элемента(ов).
В любой окислительно-восстановительной реакции (ОВР) всегда должен быть как минимум один элемент, повышающий степень окисления (восстановитель), и другой — понижающий степень окисления (окислитель).
КЛАССИФИКАЦИЯ ПО ТЕПЛОВОМУ ЭФФЕКТУ
Определение
Тепловой эффект реакции — — теплота, поглощаемая или выделяемая системой в ходе химической реакции.
Определение
Экзотермические реакции — реакции, протекающие с выделением тепла (+Q)
Самые типичные экзотермические реакции — это реакции горения:
Иногда энергетический «выигрыш» настолько велик, что происходит выделение и тепловой и световой энергии, что чаще всего принято называть взрывом. Например, горение метана в атмосфере воздуха.
В случае, если на образование новых химических связей требуется энергия большая, чем выделилась при разрыве старых связей, то системе требуется дополнительная подача тепла.
Определение
Эндотермические реакции — реакции, протекающие с поглощением тепла (-Q)
Например,
Определение
Термохимические уравнения — уравнения химических реакций с указанием теплового эффекта реакции.
Подробнее термохимические уравнения будут рассмотрены в соответствующем разделе.
КЛАССИФИКАЦИЯ ПО АГРЕГАТНОМУ СОСТОЯНИЮ РЕАГЕНТОВ
Напомним, что существует четыре агрегатных состояния вещества: газ, жидкость, твердое и плазма (последнее встречается крайне редко).
Определение
Реакции, протекающие в одной фазе называются гомогенными, например реакция между двумя растворами или между двумя газами. Реакции, протекающие на границе раздела фаз, называются гетерогенными.
Граница раздела фаз присутствует в системе, образованной, например, жидкостью и твердым телом (металл и кислота), твердым телом и газом (гетерогенный катализ), двумя несмешивающимися жидкостями (масло и вода). Чаще всего химические реакции являются гетерогенными.
Агрегатное состояние вещества обычно обозначается буквами русского алфавита нижним индексом в скобках : (г) — газ, (ж) — жидкость, (т) — твердое.
КЛАССИФИКАЦИЯ ПО НАЛИЧИЮ КАТАЛИЗАТОРА
Определение
Катализатор — вещество, которое ускоряет скорость химической реакции, но само при этом не расходуется.
Ингибитор — вещество, замедляющее или предотвращающее протекание химической реакции.
Следует понимать, что катализатор участвует в реакции и претерпевает ряд изменений (каталитический цикл), превращается в промежуточные соединения, которые разрушаются к концу каталитического цикла, превращаясь в исходный катализатор. Поэтому иногда в учебниках встречается формулировка: «катализатор в реакции не расходуется».
Классификация реакций по наличию катализатора | |
---|---|
каталитические | некаталитические |
с участием катализатора | без участия катализатора |
Природные катализаторы — ферменты, способны в мягких условиях (например, t тела человека равна 36,6 градуса) способствовать тому, что биохимические процессы в организме протекают с эффективностью, близкой к 100%, в то время, как выход промышленных химических процессов редко составляет более 50%.
Ингибиторы используются в быту и в промышленности для подавления протекания нежелательных процессов: старения полимеров, окисления топлива и смазочных масел, пищевых жиров и др. Например, ортофосфорная кислота замедляет процессы окисления железа (коррозию), поэтому ее используют для предотвращения ржавления. Часто ингибиторы используются в медицине, в лекарственных препаратах, например ингибиторы образования ферментов и др
КЛАССИФИКАЦИЯ ПО НАПРАВЛЕНИЮ ПРОТЕКАНИЯ РЕАКЦИИ
Определение
Реакции, которые при заданных условиях протекают как в прямом, так и в обратном направлении, называют обратимыми.
Классификация реакций по направлению реакций | |
---|---|
обратимые | необратимые |
протекают одновременно в двух противоположных направлениях | протекают в одном направлении (необратимо) |
При записи таких реакций вместо знака равенства используют противоположно направленные стрелки: . В этом случае может наступить состояние равновесия. Это означает, что скорость прямого процесса становится равной скорости обратного процесса. С точки зрения получения конечных продуктов — обратимость реакции является негативным явлением, поэтому часто в промышленных химических процессах приходится смещать химическое равновесие различными способами. Способы смещения химического равнвесия подробно рассматриваются в теме: «Химическое равновесие».
Обратимые реакции очень распространены в химии. К ним относятся диссоциация воды и слабых кислот, гидролиз некоторых солей, реакции водорода с бромом, иодом и азотом, многие промышленно важные реакции, такие как:
г г г
г г г
г г г
г г г
т в г г г
г г г г .
Источник
Реакции соединения. При этих реакциях из нескольких исходных веществ относительно простого состава получается одно вещество более сложного состава: Как правило, эти реакции сопровождаются выделением тепла, т. е. приводят к образованию более устойчивых и менее богатых энергией соединений. Типичные реакции соединения — взаимодействие простых веществ, например металлов и неметаллов: или неметаллов и более активных неметаллов: При реакции соединения простых веществ всегда происходят реакции окисления-восстановления. Из сложных веществ (химических соединений) в реакции соединения вступают основные оксиды с кислотными оксидами: или оксиды с водой: К этому же типу реакций относят и образование кристаллогидратов: Реакции соединения, протекающие с участием сложных веществ, могут происходить без изменения степени окисления. Но это могут быть и окислительно-восстановительные реакции. Окислительно-восстановительные реакции соединения происходят обычно в тех случаях, когда сложное вещество содержит элемент, который может увеличивать свою степень окисления: Частный случай реакций соединения — реакции полимеризации (см. гл. 32), в которых при соединении одинаковых молекул образуются макромолекулы. Разновидностью реакций полимеризации являются реакции димеризации, например: Реакции разложения. Эти реакции приводят к образованию нескольких соединений из одного сложного вещества: Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества. Из реакций разложения, протекающих без изменения степеней окисления, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот: Легко разлагаются соли аммония, например Этим широко пользуются при качественном анализе, применяя для осаждения различных веществ соли аммония. При нагревании разлагаются также соли угольной и сернистой кислот, выделяя летучие оксиды углерода и серы: К реакциям разложения, при которых происходит окисление- восстановление, относят разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления: Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты (см. гл. 13). Реакции разложения органических веществ происходят, например, при крекинге: и при дегидрировании углеводородов: Многие реакции замещения окислительно-восстановительные. Реакции замещения. В этих реакциях чаще всего простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное: Более активный металл (восстановитель) отдает свои электроны иону менее активного металла или водорода и, наоборот, более активный неметалл отнимает электроны у менее активного (в последней реакции хлор в степени окисления +5 отнимает электроны от атомов иода — степень окисления 0, а сам восстанавливается до степени окисления 0). Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, немногочисленны. Следует отметить реакции оксида кремния(ГУ) с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды: и отщепление воды от некоторых кислот, также имеющих летучие ангидриды: Иногда такие реакции рассматривают как реакции обмена: Реакции обмена. Это реакции между двумя соединениями, которые обмениваются между собой своими составными частями: Итак, при реакциях замещения обычно происходит окисление- восстановление. При реакциях обмена степень окисления атомов никогда не меняется. В реакции обмена чаще вступают сложные вещества — оксиды, основания, кислоты и соли. Частный случай реакций обмена — реакция нейтрализации: Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газа, легколетучего вещества, осадка или малодиссоциирующего (в растворе) соединения: Реакции переноса. При этих реакциях атом или группа атомов переходит от одной структурной единицы к другой: Например: Рассмотренные пять типов реакций, безусловно, не охватывают все многообразие химических реакций. Однако, если рассмотреть реакцию как сложный процесс, протекающий через несколько стадий, при классификации реакций не возникнет особых трудностей. Например: Эта реакция происходит в несколько стадий. Реакция переноса: Реакции обмена: Реакция разложения: |
Источник