Дезоксирибоза в каких продуктах
Содержание статьи
Углеводы, их строение и функции • Биология, Биохимия | Фоксфорд Учебник
Углеводы представляют собой соединения с общей формулой или , то есть условно состоящие из углерода и воды — отсюда их название. Содержание углеводов в живых клетках различно. В животных клетках содержание углеводов колеблется от 1 до 5 %. В растениях содержание углеводов заметно выше — до 70 % в некоторых запасающих органах, например в клубнях картофеля. Кроме высокого содержания углеводов для растений характерно и большее их разнообразие.
классификация углеводов
Углеводы делятся на две группы — простые углеводы, или моносахариды, и сложные углеводы, которые, в свою очередь, включают в себя дисахариды, олигосахариды и полисахариды.
моносахариды
Простые углеводы, как правило, представляют собой многоатомные спирты, содержащие ОН-группу у каждого атома углерода, кроме одного, несущего альдегидную или кетогруппу. Это видно на примере глюкозы, которая имеет 6 атомов углерода, при этом первый — в составе альдегидной группы, а остальные несут ОН-группы.
Наиболее распространенными моносахаридами являются глюкоза, или виноградный сахар, и фруктоза, или фруктовый сахар. Они являются изомерами и имеют одну и ту же общую формулу .
Пентозы и гексозы способны замыкаться в 5- или 6-членные кольца, переходя в циклическую форму.
Линейная и циклическая формы глюкозы
Длина углеродной цепи в моносахаридах, встречающихся в живых организмах, колеблется от 3 до 8 атомов, хотя большинство из них содержит 3, 5 или 6 атомов углерода. В зависимости от количества атомов углерода моносахариды разделяют на триозы, тетрозы, пентозы, гексозы, гептозы, октозы. Моносахариды хорошо растворимы в воде, образуют кристаллы и имеют сладкий вкус.
Большое биологическое значение имеют пентозы рибоза и дезоксирибоза, которые входят в состав РНК и ДНК соответственно.
Структура глюкозы и других гексоз
Многообразие моносахаридов связано в основном с оптической изомерией (см. тему «Хиральность и оптическая изомерия биомолекул»). Так, глюкоза, манноза и галактоза имеют одну и ту же брутто-формулу , но отличаются расположением функциональных групп в пространстве. Розовым на рисунке выделены группы с отличающейся от глюкозы ориентацией.
Альдегидная или кетонная группа обычно взаимодействует с одной из спиртовых групп молекулы, образуя циклическую форму. Процесс циклизации глюкозы показан на рисунке. Циклическую форму изображают стандартным способом, в виде плоского кольца. Устойчивы 5-членные и 6-членные циклы. Обратите внимание, что одним из атомов в кольце является кислород, а один из углеродных атомов (6-й) оказывается вне кольца. Глюкоза в основном присутствует в растворе в виде 6-членного кольца.
При изображении циклических сахаров ОН-группы в D-ориентации (те, что смотрят вправо в линейной формуле) оказываются под плоскостью кольца, а ОН-группы в L-ориентации (влево в линейной формуле) — над плоскостью кольца, то есть линейную формулу нужно повернуть вправо, как показано в анимации.
Фруктоза замыкается в 5-членное кольцо, т. к. имеет кетогруппу, расположенную при 2-м атоме, которая взаимодействует с гидроксильной группой при 5-м атоме. Линейная и циклическая формулы фруктозы:
альфа- и бета-изомеры сахаров
При циклизации моносахаридов возникает оптическая изомерия по тому атому углерода, который содержался в составе альдегидной или кетогруппы (они не имеют оптической изомерии, т. к. в них атом С не тетраэдрический — есть двойная связь, и заместителя всего три). После замыкания в цикл этот С становится тетраэдрическим, и при нем появляется ОН-группа (у глюкозы это атом 1, у фруктозы — 2). Данная ОН-группа называется гликозидным гидроксилом. В какой оптической конфигурации — D или L — этот гидроксил будет находиться? Это происходит случайным образом, поэтому возможны оба варианта, и эти изомеры превращаются друг в друга через линейную форму. Изомер, в котором ОН-группа оказывается в D-ориентации и, соответственно, под плоскостью кольца, называется -изомером. Изомер, в котором та же группа оказывается в L-ориентации и над плоскостью кольца — -изомером. Между собой эти изомеры называются — и -аномерами. Процесс взаимного перехода этих форм друг в друга называется муторотацией.
В свободном моносахариде они переходят друг в друга, но при образовании связи фиксируется тот или иной вариант, то есть различают — и -связи в олиго- и полисахаридах.
Структура дезоксирибозы и рибозы
Дезоксирибоза отличается от рибозы отсутствием одного кислорода при 2-м атоме С («дез» — без, «окси» — указывает на кислород). Атомы этих сахаров в составе ДНК и РНК нумеруют со штрихами, чтобы в нуклеотидах была сквозная нумерация атомов (без штрихов нумеруют атомы в другой части нуклеотида — азотистом основании).
дисахариды
Молекулы моносахаридов могут образовывать связи между собой с потерей молекулы воды. В результате образуются олиго- и полисахариды. К олигосахаридам относят растворимые в воде полимеры моносахаридов.
Дисахариды широко распространены в живой природе.
Сахароза (свекловичный, тростниковый сахар), представляющая собой соединение глюкозы и фруктозы, играет важную роль в растениях, где она служит транспортируемой формой углеводов во флоэме. Кроме того, она часто накапливается в качестве запасного вещества. Особенно много ее в сахарном тростнике и свекле, откуда ее получают для использования в пищу.
Другой важный дисахарид — лактоза (или молочный сахар) содержащаяся в молоке млекопитающих. Она состоит из остатков глюкозы и галактозы.
Мальтоза, образованная двумя остатками глюкозы, образуется при расщеплении крахмала и гликогена в пищеварительном тракте животных или при прорастании семян растений.
В природе встречается много других дисахаридов, кроме того, известны олигосахариды, содержащие 3 и 4 остатка моносахаридов.
При описании структуры ди- и полисахаридов существенным является:
полисахариды
Полисахариды нерастворимы в воде и не имеют сладкого вкуса. Так как к одному остатку моносахарида может быть присоединено несколько других остатков, полисахариды могут иметь разветвленную структуру. В живых организмах наиболее широко распространены полимеры глюкозы — крахмал, гликоген и целлюлоза.
Одними из важнейших полисахаридов являются полимеры из остатков глюкозы — крахмал, гликоген и целлюлоза.
Крахмал состоит только из остатков глюкозы. В состав крахмала входят два компонента — линейный компонент, называемый амилозой, и разветвленный — амилопектин. Амилоза имеет спиральную пространственную структуру. Внутрь спирали способны встраиваться молекулы йода, поэтому качественная реакция на крахмал — образование синего йодкрахмального комплекса. Молекулы амилозы и амилопектина содержат несколько тысяч остатков глюкозы. Крахмал служит основным запасным веществом у растений.
У животных и грибов резервную (запасающую) функцию выполняет гликоген — полисахарид, похожий на амилопектин, но отличающийся большей разветвленностью. Крахмал и гликоген накапливаются в клетках в виде гранул.
Целлюлоза представляет собой линейный неветвящийся полимер, содержащий примерно 10 000 остатков глюкозы. Молекулы целлюлозы располагаются параллельно друг другу и образуют между собой множество водородных связей. Таким образом формируются прочные пучки молекул — мицеллы, которые объединяются в волокна (микрофибриллы). Такое строение придает целлюлозе высокую механическую прочность. Целлюзоза встречается в основном у растений, где составляет основу клеточных стенок. Помимо растений целлюлоза обнаружена у оомицетов (группа, которую обычно относили к грибам) и у асцидий. Целлюлоза — самое распространенное на земле органическое вещество.
Близок по строению к целлюлозе хитин. В нем мономерной единицей является N-ацетилглюкозамин — азотсодержащий моносахарид, производное глюкозы. Хитин служит основой клеточных стенок грибов и образует наружный скелет у членистоногих.
Клеточную стенку бактерий образует соединение муреин (от лат. murum — стена). Оно состоит из полисахаридных цепочек, сшитых между собой пептидными мостиками. Поэтому его еще называют пептидогликаном (гликаны — другое название сложных углеводов). Полисахаридные цепочки муреина образованы двумя чередующимися остатками азотсодержащих моносахаридов. Пептидные мостики муреина содержат D-изомеры аминокислот, что является редкостью в живом мире.
Крахмал.
Крахмал включает в себя два компонента: линейный (неветвящийся) — амилозу — и ветвящийся — амилопектин. Цепочки амилозы состоят из остатков глюкозы, соединенных-(1-4)-связями. Так как в случае
-связи каждый следующий мономер поворачивается относительно предыдущего на один и тот же (тетраэдрический) угол, возникает спиральная структура.
Амилопектин включает в себя цепочки, подобные амилозе, которые дополнительно ветвятся за счет-(1-6)-связей.
Гликоген.
Устроен подобно амилопектину, с большой частотой ветвления. Пространственная структура напоминает плоскую ветвящуюся спираль.
Центром организации гликогеновой гранулы служит белок гликогенин (на рисунке цветной).Целлюлоза.
Неветвящийся (линейный) полимер из остатков глюкозы. Остатки глюкозы соединены между собой-(1-4)-связями. Поскольку
-связь находится над плоскостью глюкозного кольца, а ОН-группа при 4-м атоме глюкозы смотрит вниз (в D-конфигурации), то каждый следующий остаток глюкозы переворачивается «вверх ногами». В результате образуется не спиральная пространственная структура, как в крахмале и гликогене, а линейная.
Часто структуру целлюлозы изображают так, но данная форма записи связи не отражает реального расположения мономеров в пространстве.
Линейные цепочки целлюлозы взаимодействуют друг с другом (за счет образования водородных связей между ОН-группами) и образуют пучки, из которых строится клеточная стенка растений и некоторых других организмов.
Хитин. Линейный
-(1-4)-полимер азотсодержащего моносахарида N-ацетилглюкозамина (производное глюкозы с модификацией у 2-го атома С).
Муреин.
функции углеводов
Функции углеводов в живых организмах многообразны.
Углеводы являются первичными продуктами фотосинтеза, на основе их углеродного скелета образуются практически все другие вещества в клетках автотрофов. Гетеротрофы потребляют эти вещества в качестве пищи.
Энергетическая функция: углеводы являются наиболее удобным источником энергии. Основные пути получения энергии у всех живых организмов рассчитаны на использование глюкозы и фруктозы.
Структурная функция: полисахариды, например целлюлоза и хитин, входят в состав клеточных стенок, хитинового панциря членистоногих. Также полисахариды являются неотъемлемыми компонентами соединительной ткани животных (хрящи, сухожилия и др.).
Запасающая (резервная) функция. Важнейшие резервные углеводы — крахмал (у растений) и гликоген (у животных и грибов).
Транспортная функция: в форме углеводов осуществляется основной транспорт веществ в многоклеточных организмах, например в крови животных (глюкоза) или в флоэме высших растений (сахароза).
Остатки олигосахаридов, находящиеся на поверхности клеток в составе гликопротеинов и гликолипидов, играют важную роль в межклеточном взаимодействии и адгезии — организации клеток в ткани.
Источник
Структура, свойства и значение дезоксирибозы / химия
дезоксирибоза, также известный как 2-дезокси-D-рибоза или 2-дезокси-D-эритропентоза — это 5-углеродный моносахарид (пентоза), эмпирическая формула которого C5h20О4. Его структура представлена на рисунке 1 (EMBL-EBI, 2016).
Молекула является компонентом структуры ДНК (дезоксирибонуклеиновая кислота), где она чередуется с фосфатными группами, образуя «скелет» полимера ДНК и связывается с азотистыми основаниями.
Присутствие дезоксирибозы вместо рибозы является разницей между ДНК и РНК (рибонуклеиновая кислота). Дезоксирибоза была синтезирована в 1935 году, но не выделялась из ДНК до 1954 года (Encyclopædia Britannica, 1998).
В дезоксирибозе все гидроксильные группы находятся на одной стороне в проекции Фишера (рисунок 2). D-2-дезоксирибоза является предшественником ДНК нуклеиновой кислоты. 2-дезоксирибоза представляет собой альдопентозу, то есть моносахарид с пятью атомами углерода и с альдегидной функциональной группой..
Следует отметить, что в случае этих сахаров атомы углерода обозначаются апострофом, чтобы отличать их от атомов азота, присутствующих в цепи ДНК. Таким образом, говорят, что дезоксирибозе не хватает OH в углероде C2 ‘.
Циклическая структура дезоксирибозы
Все углеводы циркулируют в водной среде, так как это дает стабильность. В зависимости от их углеродного числа они могут принять структуру, аналогичную фурану или пирану, как показано на рисунке 3 (MURRAY, BENDER, & BOTHAM, 2013).
Дезоксирибоза существует в основном в виде смеси трех структур: линейной формы H- (C = O) — (CH2) — (CHOH) 3-H и двух кольцевых форм дезоксирибофуранозы (C3′-эндо) с кольцом из пяти конечности и дезоксирибопираноза («С2′-эндо») с шестичленным кольцом. Последняя форма является преобладающей, как указано на рисунке 4.
Различия между рибозой и дезоксирибозой
Как следует из названия, дезоксирибоза является дезоксигенированным сахаром, а это означает, что она получается из рибозного сахара потерей атома кислорода..
В нем отсутствует гидроксильная группа (ОН) в углероде C2 ‘, как показано на рисунке 5 (Carr, 2014). Дезоксирибозный сахар является частью цепи ДНК, а рибоза — частью цепи РНК..
Поскольку пентозные сахара, арабиноза и рибоза различаются только по стереохимии при С2 ‘(рибоза представляет собой R, а арабиноза представляет собой L в соответствии с соглашением Фишера), 2-дезоксирибоза и 2-дезоксиарабиноза эквивалентны, хотя последние термин используется редко, потому что рибоза, а не арабиноза, является предшественником дезоксирибозы.
Физико-химические свойства
Рибоза представляет собой белое твердое вещество, которое образует бесцветную жидкость в водном растворе (Национальный центр биотехнологической информации, 2017). Он имеет молекулярную массу 134,13 г / моль, температуру плавления 91 ° C и, как и все углеводы, он очень хорошо растворяется в воде (Royal Society of Chemistry, 2015).
Дезоксирибоза происходит из пентозофосфатного пути из рибозо-5-фосфата энзимами, называемыми рибонуклеотидредуктазами. Эти ферменты катализируют процесс дезоксигенации (СОЕДИНЕНИЕ: C01801, S.F.).
Дезоксирибоза в ДНК
Как упоминалось выше, дезоксирибоза является компонентом цепи ДНК, что придает ей большое биологическое значение. Молекула ДНК (дезоксирибонуклеиновая кислота), является основным хранилищем генетической информации в жизни.
В номенклатуре стандартной нуклеиновой кислоты, нуклеотид ДНК представляет собой молекулу дезоксирибозы с объединенной (обычно аденин, тимин, гуанин или цитозин) на основе органического углерода 1 «рибозы.
5′-гидроксил каждого блока дезоксирибозы заменен на фосфат (который образует нуклеотид), который присоединен к 3′-углероду дезоксирибозы в предыдущем блоке (Крик, 1953).
Для образования нити ДНК в первую очередь требуется образование нуклеозидов. Нуклеозиды предшествуют нуклеотидам. ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота) образованы нуклеотидными цепями.
Нуклеозид образован гетероциклическим амином, называемым азотистым амином и молекулой сахара, которая может быть рибозой или дезоксирибозой. Когда фосфатная группа связана с нуклеозидом, нуклеозид становится нуклеотидом.
Основаниями в нуклеозидных предшественниках ДНК являются аденин, гуанин, цитозин и тимин. Последний заменяет урацил в цепи РНК. Молекулы сахара дезоксирибозы связываются с основаниями в ДНК-предшественниках нуклеозидов.
Нуклеозиды ДНК обозначены аденозином, гуанозином, тимидином и цитозином. Рисунок 6 иллюстрирует структуры ДНК нуклеозидов.
Когда нуклеозид приобретает фосфатную группу, он становится нуклеотидом; Одна, две или три фосфатные группы могут быть присоединены к нуклеозиду. Примерами являются аденин рибонуклеозидмонофосфат (АМФ), аденин рибонуклеозиддифосфат (АДФ) и аденин рибонуклеозидтрифосфат (АТФ).
Нуклеотиды (нуклеозиды, связанные с фосфатом) являются не только основными компонентами РНК и ДНК, но также служат источниками энергии и передатчиками информации в клетках..
Например, АТФ служит источником энергии во многих биохимических взаимодействиях в клетке, ГТФ (гуанозинтрифосфат) обеспечивает энергию для синтеза белка, а циклический АМФ (циклический аденозинмонофосфат), циклический нуклеотид, преобразует сигналы в белки. реакции гормональной и нервной системы (синий, SF).
Для случая ДНК, монофосфат нуклеотиды связаны через связь между углеродом fofodiester 5 «и 3» другого нуклеотида с образованием пряди цепи, как показаны на рисунке-.
Впоследствии цепь, образованная нуклеотидами, соединенными фосфодиэфирной связью, связывается с комплементарной цепью, образуя молекулу ДНК, как показано на рисунке 9..
Биологическое значение дезоксирибозы
Конфигурация цепочки ДНК является очень стабильной, частично из-за стеков молекул дезоксирибозы..
молекулы дезоксирибозы взаимодействуют Ван-дер-Ваальса между ними постоянных дипольных взаимодействий и диполь-индуцированный атомами кислорода гидроксильных групп (ОН), придающих дополнительную устойчивость к нити ДНК
Отсутствие 2′-гидроксильной группы в дезоксирибозе, по-видимому, является причиной большей механической гибкости ДНК по сравнению с РНК, что позволяет ей предполагать конформацию двойной спирали, а также (у эукариот) плотно наматываться внутри ядра клетка.
Молекулы двухцепочечной ДНК также обычно намного длиннее молекул РНК. Основа РНК и ДНК структурно схожи, но РНК является одноцепочечной и состоит из рибозы вместо дезоксирибозы..
Из-за отсутствия гидроксильной группы ДНК более устойчива к гидролизу, чем РНК. Отсутствие частично отрицательной гидроксильной группы также способствует стабильности ДНК на РНК..
Всегда существует отрицательный заряд, связанный с фосфодиэфирными мостиками, которые связывают два нуклеотида, которые отталкивают гидроксильную группу в РНК, делая ее менее стабильной, чем ДНК (Структурная биохимия / Нуклеиновая кислота / Сахары / Дезоксирибоза, сахар, 2016).
Другие биологически важные производные дезоксирибозы включают моно-, ди- и трифосфаты, а также 3′-5′-циклические монофосфаты. Следует также отметить, что смысл нити ДНК обозначается атомами углерода рибозы. Это особенно полезно для понимания репликации ДНК.
Как уже отмечалось, молекулы ДНК являются двухцепочечными, а две цепи антипараллельны, то есть они бегут в противоположных направлениях. Репликация ДНК у прокариот и эукариот происходит одновременно в обеих цепях.
Однако в любом организме нет фермента, способного полимеризовать ДНК в направлении от 3 до 5, так что обе вновь реплицированные цепи ДНК не могут расти в одном и том же направлении одновременно..
Однако один и тот же фермент воспроизводит обе цепи одновременно. Один фермент непрерывно реплицирует цепь («проводящая цепь») в направлении от 5 до 3 с тем же общим направлением продвижения.
Повторно реплицируйте другую цепь («задержанную цепь») при полимеризации нуклеотидов в коротких струях из 150-250 нуклеотидов, снова в направлении от 5 ‘до 3’, но в то же время обращенных к заднему концу РНК. прецедент, а не к нереплицированной части.
Поскольку цепи ДНК антипараллельны, фермент ДНК-полимераза работает асимметрично. В основной цепи (вперед) ДНК синтезируется непрерывно. В задержанном филаменте ДНК синтезируется в короткие фрагменты (1-5 кг оснований), так называемые фрагменты Оказаки.
Несколько фрагментов Оказаки (до 250) должны быть синтезированы последовательно для каждой вилки репликации. Чтобы это произошло, геликаза действует на задержанную цепь, чтобы разматывать дцДНК в направлении от 5 ‘до 3’..
В ядерном геноме млекопитающих, большинство РНК-праймера, в конечном счете удалены как часть процесса репликации, а после репликации митохондриального генома небольшой РНК-часть остается в качестве составной части конструкции замкнутой кольцевой ДНК,.
ссылки
- Синий, М.-Л. (S.F.). В чем разница между нуклеотидом и нуклеозидом? Восстановлено от sciencing.com.
- Карр, С. М. (2014). Дезоксирибоза в сравнении с рибозным сахаром. Получено с mun.ca.
- СОЕДИНЕНИЕ: C01801. (S.F.). Восстановлено из genome.jp.
- Крик, Дж. Д. (1953). Структура для дезоксирибозы нуклеиновой кислоты. природа. Восстановлено от genius.com.
- EMBL-EBI. (4 июля 2016 г.). 2-дезокси-D-рибоза. Восстановлено с ebi.ac.uk.
- Энциклопедия Британника. (1998, 20 сентября). дезоксирибоза. Восстановлено с britannica.com.
- MURRAY, R.K., BENDER, D.A. & BOTHAM, K.M. (2013). Харпер Биохимия 28-е издание. McGraw-Hill.
- Национальный центр биотехнологической информации … (2017, 22 апреля). База данных PubChem Compound; CID = 5460005. Получено из pubchem.ncbi.nlm.nih.gov.
- Королевское химическое общество. (2015). 2-дезокси-D-рибоза. Получено с chemspider.com.
- Структурная биохимия / Нуклеиновая кислота / Сахары / Дезоксирибоза Сахар. (2016, 21 сентября). Получено с wikibooks.org.
Источник