Давление 10 атмосфер какая глубина
Содержание статьи
Показатели давления воды на глубине
Влияние глубины
Чем глубже происходит погружение в водную толщу, тем больше становится ее сила. Глубина прямо влияет на увеличение давление. Это значение возрастает пропорционально.
Чем глубже, тем больше плотность водной толщи. С каждым последующим опусканием тела возникает все большая разница между внешним и внутренним водным давлением.
На поверхности действует атмосферное давление. При опускании в воду помимо него тела начинают испытывать еще и гидростатическое сдавливание.
Даже на мелководье на тело оказывается суммарное влияние, состоящее из атмосферного и гидростатического. При нырянии внешнее воздействие на тело возрастает. Возникает разница из-за увеличения плотности среды.
Верхние слои давят на нижние. За счет этого возникает сдавливающая сила на глубоководье. При этом ее показатель на одной глубине один и тот же по всем направлениям.
Зависимость двух физических показателей
С каждым последующим опусканием на 10 м воздействие становится больше на 1 атмосферу. Уже при погружении на 100 метров тела испытывают давление, соизмеримое с тем, что создается в паровом котле.
С погружением общее давление как на человека, так и на любой другой объект, возрастает. На 10 м оно становится больше вдвое.
Прирост давления на глубоководье неодинаков:
- На 10 м прирост составляет 100%.
- На 20 м он уже уменьшается вдвое (50%).
- На 40 он падает до 25%.
- На 60 он уже меньше 20% и составляет 17%.
В воде помимо атмосферного давления возникает еще гидростатический прессинг. Он также называется избыточным. При нахождении в воде любой объект будет испытывать уже сумму двух давлений: атмосферного и избыточного.
Зависимость двух величин напрямую прослеживается при изучении состояния человека, находящегося в условиях глубоководья. Если поместить человека в глубоководную среду, то он не сможет сделать полноценный вдох.
Возникшая разница между двумя давлениями, одно из которых оказывается на грудную клетку водой, а второе воздухом, что создается в легких, не позволит человеку нормально дышать. При большем погружении грудная клетка разорвется.
Формула для расчета
Данный показатель повышается пропорционально погружению. Он рассчитывается по специальной формуле:
P = p * g * h, где
- p — плотность среды. Примерно равна 1000 кг/м2.
- g — это ускорение, которое придается телу силой тяжести. Это значение называется ускорением силы тяжести или свободного падения. На Земле данная величина примерно равняется 9,81 м/с2.
- h — глубина, на которую погружается какой-либо объект. Высчитывается в метрах.
Формула является выражением закона Паскаля. По ней высчитывается значение гидростатического прессинга. Он напрямую зависит от высоты водного столба.
Произведение плотности (p) и ускорения (g) приблизительно равняется 0,1 атм. С каждым метром опускания на дно воздействие в водной среде повышается на 0,1 атм. Данное правило подтверждает тот факт, что чем глубже происходит опускание в толщу, тем выше становится показатель воздействия.
Сколько составляет на различных глубоководных участках?
Если какой-либо объект поместить в воду на один метр, то он будет испытывать на себе силу, равную 0,1 атм.
Предмет, погруженный на 2 м, уже станет испытывать прессинг величиной около 0,2.
С каждым последующим метром показатель будет возрастать на 0,1 атм. При 5 м значение равняется 0,5. При 10 оно будет уже равняться 1. Более точное число равняется 0,97 атмосферы.
На глубоководье водная толща становится сжатой. Ее плотность увеличивается. Уже на 100 м сила будет практически равняться 10. Более точное число составляет 9,7.
На глубинном участке в 1 км водная среда будет сдавливать находящиеся в ней объекты примерно со значением в 97 атм. Поскольку при 100 м величина равна 9,7, то на 1000 м она увеличивается в 10 раз.
Изменение показателя на разных глубоководных участках представлено в таблице.
Глубина, на которую объект погружается в воду, в метрах | Давление в атмосферах. |
1 | 0,10 |
2 | 0,19 |
3 | 0,29 |
4 | 0,39 |
5 | 0,49 |
10 | 0,97 |
15 | 1,46 |
25 | 2,43 |
50 | 4,85 |
100 | 9,70 |
200 | 19,40 |
250 | 24,25 |
500 | 48,50 |
1000 | 97 |
При первых 10 метрах прирост невысокий и составляет 0,1 атмосферы. Дальше его показатель увеличивается.
Заключение
Глубина влияет на давление воды. С каждым метром движения объекта вглубь его показатель увеличивается на 0,1 атм. Уже на 10 м сдавливающая сила воды составляет почти 1 атмосферу. Зависимость обеих величин обусловлена плотностью воды, которая возрастает по мере движения тела в ней на дно.
Также на глубоководье происходит увеличение внешнего силового воздействия на объект. Если на поверхности тела испытывают воздействие только атмосферного давления, то в воде помимо него на них еще оказывается и гидростатическое.
При этом прирост воздействия на разных глубинных участках неодинаков. Особенно он высок при первых 10 м погружения. Дальше он начинает довольно быстро снижаться.
А какова Ваша оценка данной статье?
Источник
Это нужно знать: какие часы реально выживут в воде?
Что такое водонепроницаемость, зачем она нужна в наручных часах, и в чем измеряется?
Для наручных часов кроме механических повреждений внешними источниками опасности можно назвать магнитное поле, пыль и воду. Технический прогресс идет семимильными шагами, кажется, что поместить часовой механизм в абсолютно герметичный корпус не составляет особой сложности. Однако, не все так просто. Заводная головка и дополнительные кнопки требуют отверстий в корпусе, это означает, что туда может просочиться влага. Повышение герметичности корпуса позволило существенно продлить срок службы наручных часов, так что можно с уверенностью сказать: водозащита стала революцией в часовом мире и изменила жизнь человека к лучшему.
Современные производители маркируют свою продукцию обозначениями, содержащими информацию о степени защищенности часов от воды. Здесь может возникнуть небольшая путаница. Слово «водонепроницаемый» по умолчанию подразумевает абсолютную герметичность. По факту водонепроницаемость связана скорее не с герметичностью, а с уровнем давления, которое выдерживает корпус, не пропуская внутрь воду.
В настоящее время в стандарте обозначения используются единицы метры и количество атмосфер. Атмосферы, бары показывают силу давления какой толщи воды способны выдержать часы (1 атмосфера или 1 бар =10 метров).
Заявленная глубина на циферблате не означает допустимую глубину погружения!
Это связано с тем, что измеряется водонепроницаемость в лабораторных условиях, где часы находятся в статичном положении при постоянной температуре. Если к этим условиям добавить динамику рук при плавании и нырянии, давление на корпус увеличится. Поэтому ошибочно думать, что в часах с обозначением 30 метров, вы сможете нырять даже на десятиметровую глубину.
Классы водонепроницаемости
10 метров (1 АТМ): часы выдерживают попадание брызг, капель дождя и пот.
30 метров (3 АТМ): часы выдержат брызги, сильный дождь, мытье рук. Если на часах присутствует надпись WATER RESISTANT, но нет конкретного числового обозначения, значит, их водонепроницаемость 30 метров (3 АТМ).
50 метров (5 АТМ): самый спорный класс водозащиты. Несмотря на обещания производителей, что в часах с маркировкой «Water Resistant 50m» можно безбоязненно плавать, не советуем полностью на это полагаться.
100 метров (10 АТМ): в часах вы сможете принимать душ, плавать и нырять, но без глубоководного погружения.
200 метров (20 АТМ): модели с маркировкой «Water Resistant 200m» подходят для ныряния на глубину не более 50 метров и нахождения в воде не дольше 2-х часов.
300 метров и выше (30, 50, 100 АТМ): часы подойдут для глубоководного погружения (дайвинга) с аквалангом.
Таблица классов водонепроницаемости
5 советов для продления жизни водонепроницаемых часов
- При регулярном контакте с водой проверяйте часы каждый год, в случае отсутствия оного – один раз в 2-3 года.
- Если часы намокли или еще находятся в воде, настоятельно не рекомендуется отвинчивать заводную головку. Перед купанием, погружением обязательно проверяйте, надежно ли она завинчена. Также не советуем нажимать на часах кнопки, иначе велик риск попадания воды внутрь корпуса.
- Если под стеклом образовался конденсат, и в тот момент невозможно обратиться в сервисный центр за консультацией, просушите часы, положив их в теплое сухое место и раскрутив заводную головку.
- Обязательно снимайте часы с руки перед баней, сауной или джакузи. Под действием высокой температуры уплотнительная прокладка в корпусе может деформироваться, а стекло может отходить от корпуса. Дополнительный вред от банных процедур в часах – образование конденсата и последующей ржавчины на деталях механизма.
- При попадании в корпус соленой или хлорированной воды часы рекомендуется промыть под струей проточной водой.
Как выбрать водонепроницаемые часы для дайвинга?
Герметичность корпуса – не единственный гарант долгой жизни водозащищенных часов. Обращать внимание нужно на все элементы конструкции.
Хороший показатель водонепроницаемости подразумевает наличие прочного стального корпуса, в идеале оснащенного завинчивающейся задней крышкой. Толщина стекла должна составлять не менее 4 мм, иначе оно не выдержит давления воды и вероятно образование трещин. Заводная головка должна быть завинчивающаяся и по возможности с дополнительной защитой по бокам. В случае, если вы выбираете себе часы для подводного погружения – браслет/ремешок для них обычно выполнен из нержавеющей стали, каучука или неопрена, обеспечивающие запас по объему запястья, необходимый при погружении в водолазном костюме.
Возможна комплектация вращающимся безелем. Вращаться он должен только против часовой стрелки и иметь специальную защиту от случайного поворота в обратную сторону.
Часы для дайвинга обычно оснащаются циферблатом, информация с которого легко считывается на расстоянии 25 см (в темноте). Минутная стрелка должна быть легко отличима от часовой. В модели может быть предусмотрен индикатор хода часов, например, секундная стрелка с люминесцентной меткой.
Часы для подводных погружений дополнительно подвергаются суровым испытаниям. На прочность механизма часы проверяются при помощи фронтального и бокового ударов пластиковым молотком. Тест считается успешным, если после него отклонение точности хода не превышает +/- 60 секунд в день.
Тест на устойчивость к соленой воде выглядит так: часы помещаются в раствор с концентрацией морской соли, приближенной к аналогичному показателю в естественных условиях (примерно 30 грамм соли на литр воды) и оставляются на сутки. Температура 18°C-25°C. Обязательное требование по завершении испытания – полное сохранение функциональности. Отдельным тестам подвергаются крепления ремешка/браслета на прочность.
Посмотрите, как испытывают часы для дайвинга под давлением 100АТМ:
Испытания на водонепроницаемость до 100АТМ
Если вам нужны русские дайверские часы без компромиссов, то обратите внимание на серию бренда Спецназ “Боевые пловцы”. Брутальны, надежны, мужской стиль!
Коллекционная серия «Боевые пловцы»
Оригинал статьи смотрите здесь
Подписывайтесь на наш канал «Часовая Слава», вас ждет еще много интересного из мира часов!
Источник
Давление под водой в морских глубинах: как измерить
Со школьных лет всем известно, что вода плотнее воздуха. Из-за этого изменение давления под водой с погружением происходит быстрее, чем смена его при увеличении высоты. Так, при спуске на 10 метров происходит рост давления на одну атмосферу. В глубоких океанических впадинах, достигающих 10 тысяч метров, этот показатель составляет 1 тысячу атмосфер. Как узнать, как изменяется давление под водой и как оно влияет на живых существ, будет описано ниже.
Физические расчеты
Плотность соленой морской воды на 1-2% выше показателя пресной жидкости. Поэтому с определенной точностью можно высчитать, какое давление под водой, потому что при погружении на каждые 10 метров происходит его рост на одну атмосферу. К примеру, подводная лодка на глубине 100 метров испытывает давление в 10 атмосфер, что можно сравнить с показателями внутри парового котла в паровозе. Из этого следует, что каждому слою в море соответствует свой гидростатический показатель. Все подводные лодки снабжены манометрами, которые измеряют давление воды за бортом, на основании чего можно определить степень погружения.
На большой глубине становится заметной сжимаемость воды, поскольку ее плотность в глубоких слоях выше, чем на поверхности. И давление растет быстрее, чем по линейному закону, из-за чего график слегка отклоняется от прямой линии. Дополнительное давление, вызванное сжатием жидкости, увеличивается пропорционально квадрату. При спуске на 11 км оно составляет около 3% от всего давления на этой глубине.
Как исследуют моря и океаны
При изучении используются батискафы и батисферы. Батисфера — это стальной шар с пустотой внутри, который выдерживает очень высокое давление морских глубин. В стенку батисферы ставится иллюминатор — герметичное отверстие, закрытое прочными стеклами. Батисферу с исследователем опускают с корабля на стальном тросе до того слоя воды, который не может осветить прожектор. Благодаря этому приспособлению удавалось спуститься до 1 км. Батискафы с батисферой (укрепленной внизу большой цистерной из стали), которая заполнена бензином, может достигнуть еще большего погружения.
Поскольку плотность бензина меньше воды, подобная конструкция может перемещаться в море, словно дирижабль в воздухе. Вместо легкого газа используется бензин. При этом батискаф снабжен запасом балласта и двигателем, благодаря которому он, в отличии от батисферы, может перемещаться самостоятельно, не требуя связи с кораблем на поверхности.
Исследования давления под водой на глубине
Поначалу батискаф плавает по воде, словно всплывшая подводная ложка. Для начала погружения в пустые балластные отсеки вливается забортная вода, из-за чего конструкция начинает опускаться под воду все глубже и глубже, пока не достигнет дна. Для всплытия на поверхность выполняется сброс балласта, и без лишнего груза батискаф легко поднимается на поверхность.
Самое глубокое погружение с использованием батискафа было выполнено 23 января 1960 года, когда он пробыл 20 минут в Марианской впадине на глубине 10919 метров под водой, где давление составляло более 1150 атмосфер (расчет проводился с учетом повышения плотности жидкости из-за сжатия и солености). По итогу эксперимента исследователи обнаружили живых существ, обитающих даже в таких труднодоступных местах.
Давление воды
Ныряя, аквалангист или пловец сталкивается с гидростатическим давлением по всей поверхности тела, при этом оно превышает нормальные показатели его организма. Хотя тело водолаза может не соприкасаться с водой напрямую за счет резинового костюма, он сталкивается с тем же давлением, что оказывает влияние на тело пловца, поскольку воздух в скафандре требуется сжать с учетом показателей окружающей среды. Из-за этого даже подаваемый через шланг воздух для дыхания должен закачиваться с учетом давления воды на предполагаемой глубине. Тот же показатель обязан быть у воздуха, доставляемого из баллонов в маску аквалангиста. Таким образом, ныряльщикам приходится дышать воздухом с непривычными показателями.
Не поможет от давления и водолазный колокол или кессон, поскольку в нем следует сжать воздух, чтобы он не попал под колокол, то есть увеличить до показателей окружающей среды. По этой причине при постепенном погружении происходит постоянная подкачка воздуха с расчетом на давление воды на достигнутой глубине.
Высокие показатели плохо влияют на самочувствие и здоровье человека, из-за чего есть определенный предел, до которого могут работать люди без вреда для здоровья. Обычно при нырянии в водолазном костюме он достигает 40 метров, что соответствует 4 атмосферам. Опуститься на большую глубину водолаз может только в жестком скафандре, который примет на себя давление воды. В нем можно спокойно погрузиться до 200 метров.
Влияние на здоровье человека
При долгом нахождении под водой при высоком давлении немалое количество воздуха растворится в крови и других биологических жидкостях тела. Если произойдет быстрый подъем водолаза на поверхность, то растворенный воздух начнет выделяться из крови в виде пузырьков. Резкое выделение пузырьков может привести к появлению сильной боли по всему телу и привести к кессонной болезни. Поэтому поднятие водолаза, долго проработавшего на большой глубине, может занять много времени (несколько часов), чтобы растворенный газ выделялся постепенно и без пузырьков.
Давление в море и морские животные
Хотя ранее были указаны огромные значения давления, имеющего место на дне моря, для морских животных это не столь существенные показатели. Местные обитатели могут в течении суток легко и спокойно переносить огромные колебания этого показателя. Однако некоторые такие животные очень плохо переносят резкую смену давления. К примеру, при извлечении на сушу морской окунь раздуется, особенно если его очень быстро извлечь из воды.
Атмосферное давление под водой достаточно просто рассчитывается. Достаточно запомнить, что на каждые 10 метров приходится 1 атмосфера. Однако на больших глубинах вступают в силу и другие показатели, такие как сжатие и плотность воды. В связи с чем придется проводить расчет с учетом этих значений.
Источник
Таблица — давление водяного столба в зависимости от глубины (высоты водяного столба) 1-500 метров Па=Pa, бар=bar, psi, psf. Гидростатическое давление столба жидкости или газа. Таблица давления воды от глубины.
Справочно: Зависимость плотности воды от температуры | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ![]() |
Источник