Атмосферное давление какая изолиния

Изолиния

Изоли́ния (от др.-греч. ισος — «равный») или линия уровня (функции) или горизонталь — условное обозначение на карте, чертеже, схеме или графике, представляющее собой линию, в каждой точке которой измеряемая величина сохраняет одинаковое значение[1][2]. Изолинии — способ представления скалярной функции от двух переменных на плоскости. Это плоское сечение трехмерного графика функции , параллельное плоскости . В картографии горизонталь соединяет точки равной высоты над данным уровнем, например над средним уровнем моря. Контурная карта — это карта, проиллюстрированная контурными линиями[3][4], например, топографическая карта, которая, таким образом показывает долины и холмы, а также уклон и степень сглаженности склонов. Контурный интервал контурной карты — это разность высот между последовательными линиями контура[5]. Градиент функции всегда перпендикулярен контурным линиям. Когда линии расположены близко друг к другу, величина градиента велика, изменение крутое. Набор уровней является обобщением линии контура для функций любого числа переменных. На карте, описывающей пересечение реальной или гипотетической поверхности с одной или несколькими горизонтальными плоскостями, горизонтали могут быть изогнутыми, прямыми или смешанными. Конфигурация этих горизонталей позволяет читателям карт оценить относительный градиент параметра и оценивать этот параметр в определенных местах. Горизонтали могут быть либо прослежены на видимой трехмерной модели поверхности, например, когда фотограмметрист, просматривая стереомодель, вычерчивает линии уровня (горизонтали), либо могут быть интерполированы из расчетных высот поверхности, например, когда компьютерная программа интерполирует горизонтали по сети высотных точек. В последнем случае метод интерполяции влияет на точность отдельных горизонталей и на их отображении наклонов, ям и пиков[6].

История[править | править код]

Идея линий, соединяющих на карте точки с одинаковыми значениями, скорее всего, возникла в XVI веке. Самая старая известная изобата найдена на карте реки Спаарне (англ.), недалеко от Харлема, датированной 1584 годом[8]. В 1701 году Эдмунд Галлей использовал изогоны на карте магнитных склонений в Атлантике[9], его карта магнитных склонений мира использовалась ещё полвека, а практика именования изогон Галлеевыми линиями продержалась ещё дольше (в русском языке — до начала XX века[10]).

Голландский инженер Николас Круик (англ.) нарисовал русло реки Мерведе с изобатами, нарисованными с интервалом в одну морскую сажень в 1727 году, а французский картограф Филипп Бюаш использовал изобаты с интервалами в десять футов на карте Ла-Манша, которая была подготовлена в 1737 году и опубликована в 1752 году. Горизонтали были использованы Доменико Ванделли для описания земной поверхности на картах герцогств Модены и Реджо в 1746 году, и Чарльз Хаттон (англ.) использовал их в Шихаллионском эксперименте[11].

В 1791 году на карте Франции использовались горизонтали с 20-метровыми интервалами, штриховки, точечные высоты и вертикальный профиль[12]. В 1801 году Франсуа Аксо использовал горизонтали в крупном масштабе 1: 500 по плану своих проектов по укреплению крепостей в Италии. К 1843 году, когда национальные картографические агентства Великобритании и Ирландии начали регулярно изображать горизонтали, они уже широко использовались в европейских странах. Изобаты обычно не использовались на морских картах России до 1834 года, и Британии до 1838 года.

Когда карты с рельефом, изображённым горизонталями, стали обычным явлением, идея распространилась на другие приложения. Возможно, последние разработки — карты изолиний качества воздуха и шумового загрязнения, которые впервые появились в Соединенных Штатах приблизительно в 1970 году.

Графический дизайн[править | править код]

Чтобы максимизировать читаемость горизонталей на картах, существует несколько вариантов дизайна, доступных для создателя карты, главным образом, толщина, цвет, тип линии и метод числовой маркировки.

Толщина горизонталей, как правило, выбирается такой, чтобы позволить читателю прочитать всю остальную информацию географической карты. Только если на картографической основе мало или нет содержимого, горизонтали возможно изобразить относительно бо́льшей толщиной. Кроме того, для многих форм карт с рельефом, изображаемым горизонталями, таких как топографические карты, обычно используют толщину и(или) тип линии, для упрощения определения высоты горизонтали. Так т. н. утолщённые горизонтали обычно проводят как каждую пятую (по высоте) горизонталь.

Цвет линии горизонтали используется для отличения горизонталей от других элементов содержания основной карты, традиционно цвет горизонталей коричневый. Цвет горизонтали иногда изменяют, так при проведении горизонталей по ледникам цвет линий выбирается синий, то есть такой же как для изобат (линий глубин акваторий).

Читайте также:  Какое артериальное давление у ребенка считается нормальным

Тип линии для горизонталей обычно используется либо как сплошная линия, либо разного рода штрих-пунктирные линии. Штрих-пунктирные (прерывистые) линии используются в тех случаях, когда проводятся дополнительные горизонтали с шагом по высоте в 2 раза меньшим (полугоризонтали) либо в 4 раза (четвертьгоризонтали) чем у обычных горизонталей. Необходимость в этом возникает, как правило, для относительно плоских местностей, где наличествующий рельеф невозможно отобразить обычными горизонталями, так как бо́льшая часть форм рельефа меньше шага по высоте обычных горизонталей.

Подписи горизонталей это обозначение их высоты. Обычно эти подписи размещают в разрыве горизонтали, при этом направление цифр подписи также имеет значение: цифры располагаются так, чтобы их верхняя часть была направлена вверх по склону рельефа, а нижняя часть — вниз.

Удобным способом отобразить рельеф с помощью горизонталей является послойная раскраска, когда промежуткам между горизонталями придается соответствующий данной высоте цвет, что отражается в легенде карты. Традиционно для послойной окраски рельефа низменностей используют оттенки зелёного цвета, а для гор — коричневого. Определённым недостатком такого способа показа рельефа становится то, что зрительно информация о рельефе становится главным содержанием карты.

Виды изолиний[править | править код]

Графики изотермических процессов в идеальном газе

  • Изоанемона — линия одинаковых среднегодовых скоростей ветра.
  • Изобаза — линия на карте, соединяющая точки с равной амплитудой и направлением неотектонических движений.
  • Изобара — изолиния одинакового давления:
    • изобара в термодинамике — график изобарного процесса;
    • изобара в метеорологии — линия на карте, обозначающая область с той или иной границей давления.
  • Изобата — линия на карте, или плане, соединяющая точки одинаковых глубин водоёма (озера, моря).
  • Изогалина — линия на географической карте, соединяющая точки с одинаковой солёностью воды.
  • Изогиета — изолиния одинакового выпадения атмосферных осадков.
  • Изогипса (горизонталь) — изолиния одинаковых высот (обычно для отображения рельефа на топографической карте).
  • Изогона — изолиния ориентации каких-либо физических величин.
  • Изодинама (от изо … и греч. dynamis — сила) — изолиния полной напряжённости земного магнитного поля или её составляющих (горизонтальной, вертикальной и др.) на магнитных картах.
  • Изотерма — изолиния одинаковых температур:
    • изотерма в термодинамике — график изотермического процесса;
    • изотерма в метеорологии — линия на карте, обозначающая область с той или иной границей температуры.
  • Изокванта — изолиния одинакового объёма производства продукта в зависимости от факторов производства.
  • Изокоста — линия, демонстрирующая комбинации факторов производства, которые можно купить за одинаковую общую сумму денег.
  • Изопахита — изолиния одинаковых мощностей пласта горных пород.
  • Изотаха — изолиния одинаковых скоростей ветра (на карте максимальных ветров).
  • Изохора — изолиния одинаковых объёмов.

Бергштрих[править | править код]

Бергштрих — чёрточка, проведённая перпендикулярно изолинии и указывающая свободным концом направление уменьшения обозначаемой изолиниями величины (для изогипс (горизонталей) и изобат — в каком направлении склон понижается). Изначально бергштрих использовали при изображении рельефа местности горизонталями, для более лёгкого определения направления скатов[13].

См. также[править | править код]

  • Градиент
  • Изоповерхность
  • Marching squares

Примечания[править | править код]

  1. ↑ Courant, Richard, Herbert Robbins, and Ian Stewart. What Is Mathematics?: An Elementary Approach to Ideas and Methods. New York: Oxford University Press, 1996. p.344
  2. ↑ D.Hughes-Hallett, W.G.McCallum, A.M.Gleason. Calculus : and Multivariable (неопр.). — John Wiley, 2013. — ISBN 978-0470-88861-2.
  3. ↑ Merriam Webster — contour line
  4. ↑ Merriam Webster — contour map
  5. ↑ Tracy, John C. Plane Surveying; A Text-Book and Pocket Manual. New York: J. Wiley & Sons, 1907. p. 337.
  6. ↑ Davis, John C., 1986, istics and data analysis in geology, Wiley ISBN 0-471-08079-9
  7. ↑ https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1901&context=etd
  8. ↑ M.Morato-Moreno. Orígenes de la representación topográfica del terreno en algunos mapas hispanoamericanos del s. XVI (исп.) // Boletín de la Asociación de Geógrafos Españoles : diario. — 2017.
  9. ↑ Thrower, N. J. W. Maps and Civilization: Cartography in Culture and Society, University of Chicago Press, 1972, revised 1996, page 97; and Jardine, Lisa Ingenious Pursuits: Building the Scientific Revolution, Little, Brown, and Company, 1999, page 31.
  10. ↑ Festschrift für Professor Dmitrij Nikolajewitsch Anutschin zu seinem 70-ten … — Obshchestvo li͡ubiteleĭ estestvoznanii͡a, antropologii i ėtnografii (Soviet Union) — Google…
  11. ↑ C. Hutton, «An account of the calculations made from the survey and measures taken at Schehallien, in order to ascertain the mean density of the Earth», Philosophical Transactions of the Royal Society of London, vol.68
  12. ↑ Colonel Berthaut, La Carte de France, vol. 1, p. 139, quoted by Close.
  13. ↑ Бергштрих // Военная энциклопедия : [в 18 т.] / под ред. В. Ф. Новицкого … []. — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911-1915.
Читайте также:  Какое вино не одним давления

Ссылки[править | править код]

  • На Викискладе есть медиафайлы по теме Contour lines
  • Воейков А. И. Изолинии // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890-1907.
  • glossary.ru// Изолиния.

Источник

Атмосферное давление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 июля 2019; проверки требуют 35 правок.

Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней[1]. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени[2]. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.

Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па)[2].

История[править | править код]

Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).

В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.

Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм.

Изменчивость и влияние на погоду[править | править код]

На земной поверхности атмосферное давление изменяется время от времени и от места к месту. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[6] (в центральной части смерча давление падает и может достигать значения 560 мм ртутного столба)[7].

На картах атмосферное давление изображается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря[8].

Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.

1 Па = 0,0075 мм рт. ст., или 1 мм рт. ст. = 133,3 Па

Стандартное давление[править | править код]

В химии стандартным атмосферным давлением с 1983 года по рекомендации IUPAC считается давление, равное 100 кПа[9]. Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышестоящего столба воздуха с единичным сечением.

В системе СГС 760 мм рт. ст. эквивалентно 1,01325 бар (1013,25 мбар) или 101 325 Па в Международной системе единиц (СИ).

Барическая ступень[править | править код]

Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень равна:

Читайте также:  Укажите в области какого атмосферного давления находится изображенная

При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.

С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.

Изменения давления с высотой[править | править код]

Изменение давления с высотой.

С высотой атмосферное давление уменьшается. Например, горная болезнь начинается на высоте около 2-3 км, а атмосферное давление на вершине Эвереста составляет примерно 1/4 от показателя на уровне моря.

В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой[10].

Уравнение статики выражает закон изменения давления с высотой:

где: — давление, — ускорение свободного падения, — плотность воздуха, — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты () изменение давления отрицательное, то есть давление уменьшается. Так как плотность газа зависит от его давления, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха , в котором плотность воздуха почти не изменяется. На практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.

Приведение к уровню моря[править | править код]

Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, R). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.

При приведении давления к уровню моря используют сокращенную формулу Лапласа:

То есть, зная давление и температуру на уровне , можно найти давление на уровне моря .

Вычисление давления на высоте по давлению на уровне моря и температуре воздуха :

где — давление Па на уровне моря [Па];

— молярная масса сухого воздуха, M = 0,029 кг/моль;

— ускорение свободного падения, g = 9,81 м/с²;

— универсальная газовая постоянная, R = 8,31 Дж/моль·К;

— абсолютная температура воздуха, К, , где — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C);

— высота, м.

На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается[5].

Более простые расчёты (без учёта температуры) дают:

где — высота в километрах.

Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.

Речь идёт об изменении на 0,1 от значения на предыдущей высоте. Это значит, что при подъёме на один километр давление уменьшается до 0,9 (точнее 0,87[прим 1]) от давления на уровне моря.

В прогнозах погоды и сводках, распространяемых для населения через интернет и по радио, используется неприведённое давление, то есть, фактическое давление на уровне местности.

См. также[править | править код]

Видеоурок: атмосферное давление

  • Фактическая погода
  • Атмосфера
  • Разгерметизация

Примечания[править | править код]

Источники[править | править код]

Сноски[править | править код]

  1. ↑ Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.

Литература[править | править код]

  • Хргиан А. Х. Физика атмосферы. — 2 изд. — М., 1958.
  • Бургесс Э. К границам пространства, пер. с англ.. — М.: Изд. иностранной литературы, 1957. — 223 с.

Ссылки[править | править код]

  • Медиафайлы по теме Атмосферное давление на Викискладе
  • Атмосферное давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890-1907.
  • График изменения атмосферного давления при изменении высоты

Источник